Background Assessment for the PROSPECT Short-Baseline Reactor Experiment

N.S. Bowden for the PROSPECT Collaboration
Lawrence Livermore National Laboratory, USA

Assessing PROSPECT Sites Close to Reactor Cores

- PROSPECT will deploy detectors close to research reactor cores
 - Limited overburden and possible reactor correlated background
 - Background measurements have been performed at 3 sites:
 - HFIR (ORNL)
 - ATR (INL)
 - NBSR (NIST)

Gamma Ray Results

Reactor correlated activity observed:
- 16O(n,p)15N, 6.1, 7.1, 8.9 MeV γ-rays (water)
- 54,55Fe(n,γ)Fe, 5.5-9.3 MeV γ-rays (steel)
- 27Al(n,\alpha)24Na, 2.75 MeV γ-ray
- ... volatile fission products, 4H(γ)H, ...

Fast neutron and muon results

- Fast neutron and muon fluxes vary with elevation and overburden as expected
- ATR near has high elevation and limited overburden → highest flux
- Greater overburden at ATR Far compensates for elevation
- NIST, HFIR similar
- Measured fast neutron spectra consistent with surface reference data

Spatial and Temporal Background Variations

- Significant variation in γ/neutron flux observed:
 - Irregular shielding and/or localized leakage paths
 - Proximity to piping carrying activated materials
 - Operation of nearby neutron beam experiments
Neutron leakage can lead to significant localized γ-ray sources
- Detailed background characterization is therefore essential to optimize shielding design.

Shielding Concept Responds to Background Sources, Size & Weight Constraints

Shielding factors from MCNP simulation:
- γ-rays: 4e-3
- Neutrons: 2e-5 (fission)
Fast neutron attenuation

Conclusions

- Background measurements have been performed at potential near and far detector locations for PROSPECT at 3 U.S. reactor sites
- Reactor correlated γ-ray and neutron background sources have been identified
- Cosmogenic backgrounds vary with elevation and overburden as expected
- Considerable spatial and temporal variations were encountered at all sites
- Extensive site characterization is therefore essential to shielding design
- Targeted shielding applied to localized sources could have large impact
- Localized thermal neutron shielding could reduce high energy γ-ray fluxes

See also:
K. Heeger: PROSPECT Summary & Physics Potential
T. Langford: PROSPECT Scintillator Development

Background Measurements Performed

Neutron Rate/Spectrum

• Moderate Resolution: Same NaI(Tl) detectors used at all sites to provide relative comparison High-resolution: Different HPGe and LaBr3 spectrometers used to identify background sources

Fast neutron Recoils integrated in (4-14) MeV range

Relative measured muon rates

Site elevations and expected surface fast neutron flux

Muon rate/distribution

Telescope was tilted to measure angular distribution

Lawrence Livermore National Laboratory, USA

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory Contract DE-AC52-07NA27344.

LLNL-POST-654856