

Optimization of Inverse Beta Decay event selection for active background reduction in PROSPECT

Xiaobin Lu

On behalf of the PROSPECT Collaboration

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

J20: Cosmogenic Fast Neutron Backgrounds in the PROSPECT Reactor Antineutrino Detector Christian Nave J20: Cosmic ray muons in the PROSPECT reactor antineutrino detector James Minock J20: The PROSPECT Short-Baseline Reactor Experiment Bryce Littlejohn

ORNL's Opportunities: World Class <u>Neutrino</u> Sources

Spallation Neutron Source: SNS

- Pulsed neutron source
- 1 GeV protons on Hg target
- 1.4 MW beam power
- 2nd target station

High Flux Isotope Reactor: HFIR

- 85 MW research reactor
- Compact core
- Fresh highly-enriched ²³⁵U fuel

PhysRevLett 122 (2019) 251801 PhysRevLett 121 (2018) 251802

PROSPECT introduction

PROSPECT detector:

- Short baseline reactor neutrino experiment located at HFIR, ORNL
- ~4 ton 6Li-loaded liquid scintillator detector
- Optically segmented into 14 x 11 identical detectors

Physics goals:

- Precise measurement of ²³⁵U anti-neutrino spectrum.
- Model-independent search for oscillations into eV-scale sterile neutrino.

$$P_{dis} \sim \sin^2 2\theta \sin^2 \left(1.27 \frac{\Delta m^2 L}{E} \frac{[eV^2][km]}{[GeV]} \right) \quad \text{Cr}$$

Water Brick Neutron Shield **HDPE** Neutron Shield Lead Lead Shield Wall **Inner Neutron Shield** - 119cm PMT Liquid Scintillator Volume

Challenge:

- On-surface experiment with minimal overburden
- Passive neutron and gamma shields mitigate the abundant reactor background but still exposed to immense cosmogenic backgrounds.

Detection Principle - Inverse Beta Decay

nuclear reco

electronic recoil

2.0

2.5

Cosmogenic backgrounds

- Primary cosmic rays interaction with atmosphere generating secondary cosmic rays like neutrons/muons;
- Fast neutrons/muon spallation shower inside the detector become dominant background source.

OAK RIDGE HFIR operates ~7 reactor cycles, each cycle about 24 days

Event selection cuts - IBD cuts

- Neutron capture box
 - $\rightarrow \mathsf{PSD}\ 2\sigma$
 - Energy 3σ
- Prompt e/γ
 - ► PSD 2σ
- Prompt-delay signal distance
 - (same, adjacent) cell
 - ▶ **∆**z = +/- (140, 100) mm
- Prompt-delay timing
 - ▶ ∆† = [1-120]µs
- Additional fiducial volume to catch escaping e/γ as well as neutron shielding.

Event selection cuts - Veto cuts

- PileupVeto: 800ns
 - Eliminate overlapping waveform
- Muon veto: 200µs
 - Veto after "muon events" with E > 15 MeV
- NeutronVeto: +/- 400µs
 - Veto delayed candidates around a neutron capture
- RecoilVeto: +200µs
 - Veto delayed candidate after a recoil-containing cluster

Optimization Figure of Merit(FOM)

- FOM = Area of IBD / Area of (nH/nC*) peak
 - Minimize dominant background
- Effective Counts = $\sum 1.0$ /relative error bar²
 - Range of interest: 0.8 7.2 MeV
 - Relative error bar ~ $1/\sqrt{N}$
 - Maximize statistical power of the data

Used ~ 20% of the data evenly distributed over time.

Examples of the optimization

Example: Muon veto time

nH FOM

- Tighten up prompt/delay event coincident distance to (140,100) mm
- Tighten up PSD requirement of prompt/ delayed events
- Performed detailed fiducialization study

Examples of the optimization

Effective stats changes if cells were fiducialized

- Performed calculation of effective stats changes for each cell to be fiducialized individually.
- Hot cells "dirty cells"
- Cold cells "clean cells"
- Bottom right hot gamma corner is caused by beam lines.

10 ххх X X X $|X| \times$ 2 0 Х $X \times X$ $\times \times \times$ X -2 X X X XXO X \times \times \times \times \times \times \times \times \times Non-fiducial Dead segments

As a result of the optimization of event selection cuts, $\sim 16\%$ improvement in IBD effective statistics, with better signal-to-background ratio $\sim 1.4:1$.

Conclusion:

- PROSPECT is currently analyzing a larger data set with optimized event selection cuts
- Multiple FOMs optimization based on ~20% data set produces unbiased high quality signals
- ~17% increased effective statistics with signal to background ratio ~1.4:1
- Spectrum/oscillation results are on the way, stay tuned

NATIONAL LABORATORY

Lawrence Livermore National Coratory prospect.yale.edu

5 Institutions, 70 collaborators UNDATION CENERGY GREE

1.0.194

Drexe

Yale