

Physics Opportunities with a PRSSPECT Upgrade

Rachel Carr (MIT), on behalf of the PROSPECT Collaboration | DPF | July 13, 2021

Reference: arXiv:2107.03934 (PROSPECT Collaboration, 2021)

Could sterile neutrinos be hiding in unexplored parameter space? $\Delta m^2_{41} \, [eV^2]$ 90% CL - PROSPECT Current Exclusion -- DANSS Current Exclusion — NEOS Current Exclusion - STEREO Current Exclusion KATRIN Current Exclusion, 95% CL Neutrino-4 Allowed, 95% CL SBL + Gallium Anomaly RAA, 95% CL 10^{-1} 10⁻² 10^{-1} $sin^2 2\theta$

Are there sterile neutrinos that could complicate long-baseline CPV results?

What explains the reactor antineutrino **spectrum shape**, including the "bump"? Counts/200keV

300

200

 $\mathbf{0}$

0.7

10

10

10

Daya Bay Collaboration, Chin. Phys. C 41 013002, arXiv:1607.05378 (2017)

Could **sterile neutrinos** be hiding in unexplored parameter space?

What is the full explanation of the **Reactor Antineutrino Anomaly?**

Are there sterile neutrinos that could complicate **long-baseline CPV results**?

What explains the **reactor antineutrino spectrum shape**, including the "bump"?

will address these questions by collecting **10x effective statistics** of PROSPECT-I at HFIR, plus potential for LEU deployment

Upgraded detector design

- Retains successful elements of PROSPECT-I: segmented ⁶Li-doped liquid scintillator with minimal shielding, located 7-9m from HEU core of HFIR (+ possible LEU site)
- Moves PMTs out of liquid scintillator volume
- Uses external calibration system instead of calibration tubes inside active volume
- Increases signal collection capacity with 25% longer segments, 20% increased ⁶Li fraction, longer data-taking period

Validation of redesigned PMT interface

Redesigned interface between PMTs and scintillator volume, showing cross-talk event

Simulation validates that **moving PMTs out of scintillator introduces minimal cross-talk between segments,** with minimal impact on signal selection.

Validation of external calibration approach

Calibration data from

 \rightarrow Analyzed as internal source for PROSPECT-I energy scale (purple inner + brown outer segments; excluding yellow inoperative segments)

 \rightarrow Analyzed to mimic external source, as in PROSPECT-II design (purple inner segments only)

Counts/

→ Externally deployed gamma sources can provide energy scale calibration for full detector.

Oscillation sensitivity

Nominal parameters:

Target mass = 4.8 tonsAverage baseline = 7.9 mReactor-on days (for 2-year run) = 336Reactor-off days (for 2-year run) = 360Signal:background = 4.3Effective signal statistics = 2.08×10^5

Oscillation sensitivity

Nominal parameters:

Target mass = 4.8 tonsAverage baseline = 7.9 mReactor-on days (for 2-year run) = 336Reactor-off days (for 2-year run) = 360Signal:background = 4.3Effective signal statistics = 2.08×10^5

PROSPECT-II:

- Conclusively addresses Neutrino-4 signal claim within 1 year
- Covers phase space at high mass splittings beyond reach of other reactor experiments

Oscillation sensitivity

Nominal parameters at HFIR:

Target mass = 4.8 tons Average baseline = 7.9 m Reactor-on days (for 2-year run) = 336 Reactor-off days (for 2-year run) = 360 Signal:background = 4.3 Effective signal statistics = 2.08×10^5

(Slide 15: parameters for possible PWR deployment)

PROSPECT-II:

- Together with future KATRIN data, covers full "RAA phase space"
- Reaches $\sin^2 2\theta_{14} = 0.03$ benchmark for CPV interpretation in 0.5-10 eV² range

Spectrum & flux sensitivity

- Increased precision on
 ²³⁵U spectrum shape →
- ²³⁵U flux measurement, with anticipated precision of ~2.5%

PROSPECT-II:

- Pushes precision on ²³⁵U spectrum shape measurement below claimed model uncertainties
- Provides a new ²³⁵U flux measurement

Conclusions

An evolutionary upgrade of the PROSPECT detector, in a 2-year run at HFIR, will:

- Search for mixing between active and sterile neutrinos in the mass-splitting range of 1-20 eV², covering a region beyond the reach of other reactor experiments;
- Extend sensitivity to the sterile mixing angle $\sin^2 2\theta_{14}$ below 0.03 in the ~1-10 eV² mass splitting range, to inform the interpretation of long-baseline CP violation experiments;
- Reduce ²³⁵U spectrum uncertainties below 5%, uniquely constraining reactor predictions;
- Perform an absolute measurement of the ²³⁵U neutrino yield and improve the robustness of the global yield picture for the three dominant fission isotopes ²³⁵U, ²³⁹Pu, and ²³⁸U;
- Enable a future program with highly correlated detector systematics at an LEU reactor to strengthen oscillation, spectrum, and flux measurements.

New this summer from PROSPECT:

PROSPECT-II Physics Opportunities arXiv:2107.03934

Joint Measurement of the ²³⁵U Antineutrino Spectrum by Prospect and Stereo arXiv:2107.03371

Joint Determination of Reactor Antineutrino Spectra from ²³⁵U and ²³⁹Pu Fission by Daya Bay and PROSPECT <u>arXiv:2106.12251</u>

Parameters for sensitivity projections

Parameter		P1	P2 at HFIR	P2 at LEU
Reactor	Power (MW _{th})	85		3000
	Cylinder Size ($d \times h$, m ²)	0.4×0.5		3×3
	Fuel	HEU		LEU
	Cycle Length	24 d		1.5 y
	Segmentation	11×14	11×14	
Detector	Segment Area (cm ²)	14.5×14.5	14.5×14.5	
	Segment Length (m)	1.17	1.45	
	Target Mass (ton)	~ 4.0	4.8	
	Light collection (PE/MeV)	~380	500	
	Detection Efficiency	$\sim 40\%$	40%	
Exposure	Average Baseline (m)	7.9	7.9	25
	Reactor-On Days (d)	105	336	548
	Reactor-Off Days (d)	78	360	61
	Signal:Background	1.4	4.3	19.3
	IBD Statistics (N _{IBD})	50560	3.74×10^5	2.72×10^{6}
	Effective Statistics (N_{eff})	15195	2.08×10^{5}	1.79×10^{6}

P-1: Parameters realized in PROSPECT-I, as analyzed in arXiv:2006.11210

P2 at HFIR: Parameters anticipated for the PROSPECT-II run at the High Flux Isotope Reactor (HFIR), Oak Ridge National Laboratory

P2 at LEU: Parameters estimated for a PROSPECT-II deployment at a commercial pressured water reactor (PWR) using lowenriched uranium (LEU) fuel

Table from arXiv:2107.03934