

ORNL Neutrino Program

ORNL Neutrino Program

Experimental Neutrino Program

towards 1 tonne 76Ge experiment

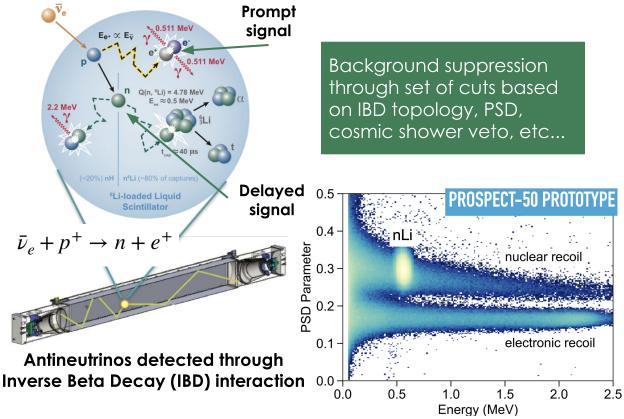
A Precision Reactor Neutrino Oscillation and Spectrum Experiment at the 85MW HFIR

COHERENT-

Coherent elastic CONCRETE AND GRAVEL neutrino-nucleus scattering at SNS

Dark matterdetectors technology

Machine Learning Applications-Physics object reconstruction, classification.


Quantum Information Science-Quantum Machine

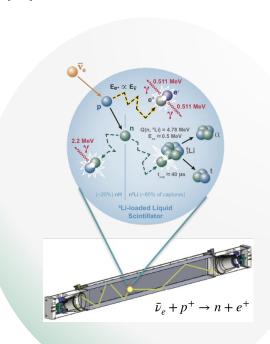
Learning

Computational Resources

Through Oak Ridge Leadership Computing Facility: High-performance computing resources like Summit, access to quantum computing processors through D-Wave and IBM. Data resources like the HPSS archival system and the Spider II center-wide parallel file system.

Antineutrino Event Reconstruction

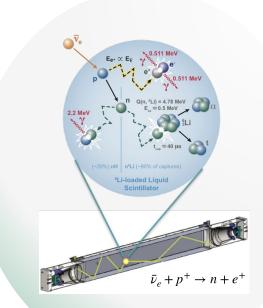
SIMULATION Event rate [mHz/MeV] before cuts (1), (2), (3)-(4), (5)PSD (6)12C inelastic neutrinos! 10- 10^{-2} prompt ionization [MeV]


> Particle ID classification in 6Li-doped liquid scintillator allows to differentiate ionization/nuclear recoil/quenched n-Li

Prompt signal: ~1-10 MeV positron energy **Delayed signal:** ~ 0.5 MeV neutron capture

Goal: Improving antineutrino event reconstruction by using ML techniques.

Efficient pulse matching



Improved particle identification

Enhanced background rejection

The Plan

Goal: Improving antineutrino event reconstruction by using ML techniques.

The focus of this talk

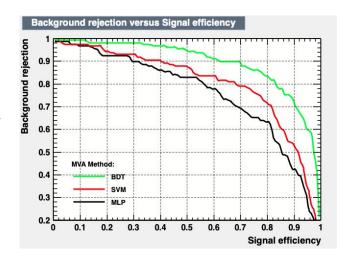
Identify potential areas of application

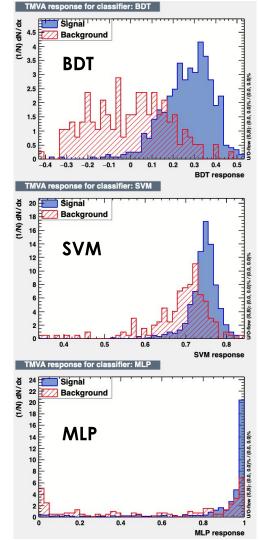
Find and/or develop a model that matches these needs.

Benchmark against classical techniques

MVA Analysis for Background Suppression

Used in addition to set of rectangular selection cuts to optimize IBD selection efficiency.

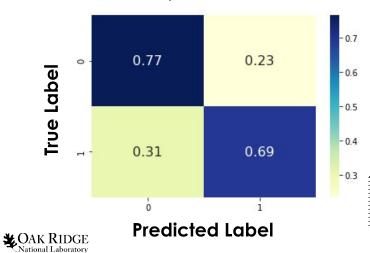

- Keep signal rate, but reduce background contamination.
- Use spatial and temporal correlations of prompt and delayed signals.
- Use ROOT's TMVA package for simplicity + easy to add to existing analysis framework.

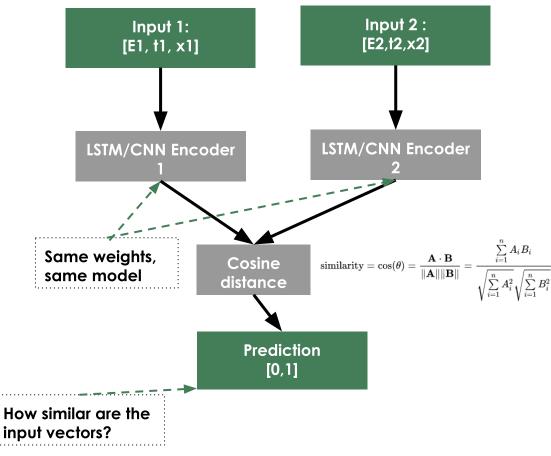

MVA Classifiers

- Multi-Layer Perceptron (MLP)
- Boosted Decision Tree (BDT).
- Support Vector Machine (SVM).

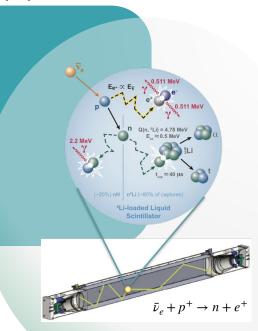
Training/test datasets

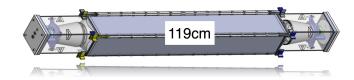
- IBD simulation from PG4 for signal
- Reactor-off dataset for background





Siamese CNN/LSTM for Pulse Matching

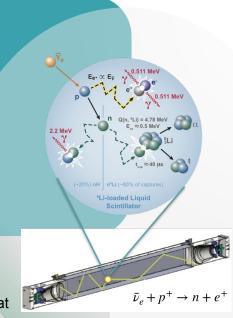

- Cast pulse matching to a "similarity" problem.
- Keras-based implementation of Siamese neural network.
 - Two identical subnetwork,
 parameter updating is mirrored
 across both subnetworks
 - Accuracy of ~73%.

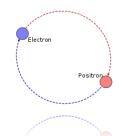


Single PMT Event Reconstruction

- ML techniques to maintain/improve particle-ID performance regardless of evolving detector conditions (single/double ended PMT readout).
- **Supervised ML** model trained on simulation and validated on experimental data.
- Improvement on cosmogenic background reduction.

See Xiaobin (Jeremy's) Lu's talk on Sunday @ 10:42 at Session SN: Instrumentation: Calibration and Electronics II on "Machine learning application to event reconstruction from single-ended PMT readout"




Single PMT Event Reconstruction

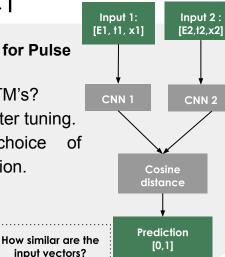
- ML techniques to maintain/improve particle-ID performance regardless of evolving detector conditions (single/double ended PMT readout).
- Supervised ML model trained on simulation and validated on experimental data.
- Improvement on cosmogenic background reduction.

Positron ID through ortho-positronium tagging

- Attempting to perform Particle-ID at waveform level.
- NN to learn distortion in timing distribution of pulses caused by o-Ps formation.
- Great impact on background suppression!

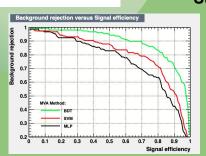
See Blaine Heffron and Diego
Venegas-Vargas' talk on
Saturday @ 11:54 at Session LK:
 <u>Mini-Symposium: Novel</u>
 <u>detector technologies, from</u>
 <u>detectos to data analysis</u> on
"Machine learning applications
for Ortho-Positronium tagging in
 liquid scintillator for the
 PROSPECT experiment"

Single PMT Event Reconstruction


- ML techniques to maintain/improve particle-ID performance regardless of evolving detector conditions (single/double ended PMT readout).
- Supervised ML model trained on simulation and validated on experimental data.
- Improvement cosmogenic background reduction.

Positron ID through ortho-positronium tagging

- Attempting to perform Particle-ID at waveform level.
- NN to learn distortion in timing distribution of pulses caused by o-Ps formation.
- impact background Great on suppression!


Siamese LSTM/CNN for Pulse Matching

- CNN's vs I STM's?
- Hyperparameter tuning.
 - Optimizing choice input information.

MVA Analysis for Background Suppression

- Train model in MC only.
- Study impact of using discriminant on energy spectrum.

 $\bar{\nu}_a + p^+ \rightarrow n + e^+$

~20%) nH nºLi (~80% of captures

⁶Li-loaded Liquid

Summary

- Overview of ML applications to reactor antineutrino data analysis were presented today.
 - Focused on improving event reconstruction methods and background suppression.
 - Currently exploring several models and programming languages.
 - Defining what models are best suited for our needs.
 - For the future, we would like to benchmark these models and applications with current methods.

ML applications in PROSPECT can help enhance PSD and P-ID power and improve reactor antineutrino event reconstruction.

Thank you!

Andrea Delgado

Corey Gilbert Blaine Heffron

Xiaobin (Jeremy) Lu Questions?

Diego Venegas-Vargas

Rosa Luz Zamora-Peinado

Alfredo Galindo-Uribarri

delgadoa@ornl.gov

