MEASUREMENT OF THE 235U ANTINEUTRINO ENERGY SPECTRUM WITH PROSPECT

BEN FOUST YALE UNIVERSITY **ON BEHALF OF THE PROSPECT COLLABORATION**

Wright Laboratory

PROSPECT TALKS AT DNP

- Latest Sterile Neutrino Analysis (<u>E.G. 00001</u> J. Pallomino Gallo)
- Joint Analysis Prospects (E.G. 00003 J. Gaison)
- Future Analysis Improvements (E.G. 00004 X. Zhang/M. Mendenhall)
- Detector Upgrade (E.G. 00005 P. Mumm)
- Machine Learning Applications (E.G. 00007 A. Delgado)
- HFIR Background Characterization (E.G. 00009 B. Heffron, C. Gilbert, A. Galindo-Uribarri)
- Machine Learning Tagging of Ortho-Positronium (L.K. 00006 B. Heffron)
- Machine Learning for Event Reconstruction (<u>S.N. 00002</u> X. Lu)

NEUTRINO SPECTRUM MEASUREMENTS FROM POWER REACTORS

- Spectrum models don't match experimental data in low enriched uranium (LEU) power reactors
 - Neutrino events come from a mixture of fissile isotopes: ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu
 - 'Bump' in 4-6 MeV (prompt energy) range
 - Poor fit overall to leading reactor models (Huber/Mueller).

HFIR: A UNIQUE EXPERIMENTAL SITE

- 85 MW reactor core
- Highly Enriched Uranium (HEU) fuel (235U)
- 46% duty-cycle, 7 cycles/yr, 24 day reactor-on periods
- >99% of $\overline{v_e}$ flux from ²³⁵U fission
- Challenges:
 - Minimal overburden (<1 mwe)</p>
 - high gamma background
 - Imited space for shielding

DETECTOR DESIGN

- Segmented detector with 154 optically separated segments
- Segmented design allows for:
 - Calibration access
 - Fiducialization
 - Position reconstruction in three dimensions
 - Event topology and particle ID

BEN FOUST, YALE UNIVERSITY

IBD SELECTION EVENT TOPOLOGY β^+ $\nabla e + p \rightarrow \beta^+ + n$ $\overline{\nabla e}$ P 0 0 $\overline{\nabla e}$ $\overline{\nabla e}$

- Clear, correlated signal signature
- Particle ID with pulse-shape discrimination
- Detector optimized for background suppression with shower veto, event topology, and fiducialization

DETECTOR PERFORMANCE

BEN FOUST, YALE UNIVERSITY

- Energy resolution of <5% at 1 MeV</p>
- MC successfully tuned to agree with calibration data
- Reject candidates from 36 fiducial segments experiencing PMT current instabilities

DETECTOR MODELING

- Full-detector IBD prompt energy response modeled by calibration-tuned Geant4 MC
- Energy leakage into dead mass/non-fiducial segments cause substantial off-diagonal contribution
- Allows accurate comparison of hypotheses in true energy to the prompt space of the experiment (Reconstructed Visible Energy)

DNP 2020

SPECTRUM MEASUREMENT

- 95.65 calendar days reactor-on, 73.09 reactoroff
- 50560 ± 406 IBD signal events
- S:B of 1.4:1 in signal energy range (0.8-7.2 MeV)

Okev	5000	
Counts/20(4000	
	3000	
	2000	•
	1000	•
	0	

SPECTRAL INTERPRETATION

- We apply the PROSPECT response matrix to the Huber model to make a comparison in prompt space
- Find that the Huber model is in reasonable agreement with our data
 - X²/ndf = 30.8/31, p-value = 0.48
 - Still statistics limited

SEARCH FOR θ_{13} -**LIKE EXCESS**

- Fit a gaussian with fixed mean and width to Daya Bay's excess in true energy
- Apply PROSPECT response and fit for amplitude in prompt space
- If ²³⁵U has no contribution to Daya Bay's findings, expect no bump
- If ²³⁵U is entirely responsible for Daya Bay's findings, expect a very large bump

BEST FIT EXCESS

- Best fit bump size relative to Daya Bay: 84%±39%
- Allowing a Daya Bay-like excess to be added to the Huber model improves the fit with $\Delta \chi^2$ of 4.84 (Δ ndf =1)
- Disfavor both 0% size 'No-Bump' and 178% size 'Big ²³⁵U Bump' cases at >2σ

CLOSING STATEMENTS

- PROSPECT is a surface detector with minimal overburden, and has made an accurate measure of the ²³⁵U spectrum and demonstrated new technology
- Have measured >50,000 IBD events from 235 U at the HFIR research reactor
- Achieve S:B of 1.4:1 in signal range
- Find the Huber model to be in reasonable agreement with data
 - Adding deviation similar to what is seen in θ_{13} experiments improves agreement significantly enough to disfavor no-bump case
 - Still statistics limited
- Joint efforts with other reactor experiments under way to improve sensitivity and allow further interpretation of spectrum

PROSPECT

15 Institutions, 70 collaborators

rence Livermor onal Laboratory

prospect.yale.edu

Funding provided by: G-SIMO

T OF

