

PROSPECT-II: Extending Scientific Reach through Upgraded Performance

October 30 2020

Pieter Mumm National Institute of Standards and Technology

On Behalf of the **PR SPECT** Collaboration

PROSPECT April 2020 Collaboration Meeting Photo

Experimental Anomalies

PROSPECT-I GOALS:

PaloVerde CHOOZ DoubleCHOOZ

10³

- 1. Search for short-baseline sterile-neutrino oscillations independent of reactor models
- 2. Measure antineutrino spectrum due to ²³⁵U
- 3. Demonstrate near-field surface operation

Experimental Strategy: PROSPECT

Experimental Strategy:

3

- Compact HEU research reactor (all 235U)
- Segmented detector localizes events and supports background rejection
- Measure high-resolution spectrum at a range of baselines (7-9m in current position)
- Search for characteristic relative spectral distortions within detector volume
- 46% reactor up time, allows equal stats for detailed study of cosmogenic backgrounds

ble baselines at earch reactors

PROSPECT-I Detector overview

PR©SPECT_⊽

- Single 4,000 L ⁶Li-loaded liquid scintillator,
- divided into 11 x 14 (154) array of optically separated segments
- 2D segmentation supports:
 - full X,Y,Z event reconstruction
 - fiducialization
 - event topology for signal selection
- Double ended PMT readout, with light concentrators
 - good light collection and energy response $\sim 5\%\sqrt{E}$ energy resolution
- Optimized shielding to reduce cosmogenic and local backgrounds

<u>PROSPECT, NIM A 922 (2018)</u> <u>PROSPECT, JINST 14 P04014 (2019)</u>

PROSPECT-I Results

Healthy					Monocular					Blind				
140	141	142	143	144	145	146	147	148	149	150	151	152	153	
<mark>126</mark>	127	128	129	130	131	132	133	134	135	136	137	138	139	
112	113	114	115	116	117	118	119	120	121	122	123	124	125	
98	99	100	101	102	103	104	105	106	107	108	109	110	111	
84	85	86	87	88	89	90	91	92	93	94	95	96	97	
70	71	72	73	74	75	76	77	78	79	80	81	82	83	
56	57	58	59	60	61	62	63	64	65	66	67	68	69	
42	43	44	45	46	47	48	49	50	51	52	53	54	55	
28	29	30	31	32	33	34	35	36	37	38	39	40	41	
14	15	16	17	18	19	20	21	22	23	24	25	26	27	
0	1	2	3	4	5	6	7	8	9	10	11	12	13	

- 50,560 ± 406 IBD signal events
- 28,357 ± 18 accidental bkg events
- 36,934 ± 221 cosmic bkg events
- <u>530 IBD signal per calendar day</u>

Excellent signal-to-background for a surface detector (< 1mwe overburden)

95.65 reactor-on calendar days, 73.09 reactor-off

- RAA best-fit excluded: 98.5% CL
- Data is compatible with null oscillation hypothesis (p=0.57)
- χ^2 /NDF =30.79/31 for **shape-only** comparison with model
- PROSPECT feature size with respect to Daya Bay: 84% ± 39%. (No ^{235}U bump disfavored at 2.2 σ CL, all ^{235}U is disfavored at 2.4 σ CL)

Yeon-jae Jwa, ICHEP 2018 2018 allowed 3+1 space compared to constraint from a null SBN result

- Ambiguities in mass ordering
- Simple 3+1 models suffer strong tensions, more complex models add rich theoretical texture that short baseline expts. can help disentangle

Spectrum/flux Still Not Understood.

Description	Precision on σ_i (%)				
Description	²³⁵ U	²³⁹ Pu	²³⁸ U		
Daya Bay LEU	3.7	8.2	30		
Daya Bay LEU + P-II HEU	2.4	6.3	21.3		
P-II LEU + P-II HEU+	1.4	3.4	15.9		
P-II LEU + P-II HEU+, Correlated	1.4	3.0	8.7		

- Spectral shape anomalies still unexplained, both in 4-6 MeV region and an very high and very low energies
- Reference spectrum needed for reactor-based hierarchy measurements, reactor CEvNS, and nuclear safeguards
- Systemically distinct input for joint spectrum analysis

PROSPECT-II absolute flux measurement can:

- Improve understanding of fission isotope yield
- Independent check of 5% deficit observed by STEREO (shortbaseline experiment)

PROSPECT - II Detector Upgrade: Evolutionary Design Strategy

Match initial performance while improving stability (maintain similar segment pitch, same scintillator formulation, etc...) and facilitating redeployment

- Separate PMTs from LiLS volume, reduce exposure to materials, and improve cover gas
- Design approach facilitates operation at multiple sites
- Planned redeployment at HIFR ~ late 2021

Calibration Access

Validating Calibration Scheme

Pieter Mumm, National Institute of Standards and Technology

Using PROSPECT-I data simulate edge deployed source.

Energy and multiplicity data used to reconstruct detector (non-linear) response.

As before, features, e.g. capture on ⁶Li and cosmogenic ¹²B beta decays, constrain model and help determine energy scale

Cross-talk and signal to background

- Windows allow for communication between segments (Monte Carlo estimates ~ < 5%)
- Data-driven simulations suggest minimal impact of aground rejection
- Increased spatial efficiency allows larger fiducial volume (40% more signal)
- Projected signal to background ~ 3:1

Spectral Shape and Flux

Assume similar performance with increased S:B \sim 3:1 and nominal 2 year and 4 year run times:

- Measurement uncertainties become comparable to model uncertainties
- Significant reduction in uncertainties in 4-6 'bump' region
- Significant increased precision in measuring the amplitude (n) of a bump-like feature in the 4-6 MeV prompt energy: PROSPECT will address hypothesis for the origin of this feature (n=0, no bump from ²³⁵U; n=1.78, bump entirely from ²³⁵UU) at high confidence level.

Oscillation Sensitivity

Global context:

- Significant gains over current sensitivity, covers below 5 deg over mid- Δm^2 phase space
- Addresses high- Δm^2 region with conflicting experimental results
- PROSPECT-II would continue to provide *unique* access to high m² region below Katrin
- Global effort is complementary, particularly if care is taken to support global analysis efforts

- PROSPECT has produced both impactful sterile oscillation and spectrum results (highest sensitivity at high- Δm^2) despite unplanned limitations to data collection (both due to PMT divider failure and a HFIR outage); yet the global picture remains unclear
- PMT failure is understood. Will be eliminated through a robust design upgrade that is in progress; allows for extended running at HIFR with the option of additional deployments at other reactors, further improving sensitivity.
- Upgrade detector and continued data collection will enable:
 - Definitively addressing the Reactor Anomaly and Neutrino-4
 - Eliminating possible ambiguities in long baseline experiments
 - High significance test of isotopic contributions to the shape anomaly
 - Absolute flux measurement

SN.00002 Machine learning application to event reconstruction from single-ended PMT readout (Xiaobin Lu)

LK.00006 : Machine learning applications for Ortho-Positronium tagging in liquid scintillator for the PROSPECT experiment (Diego Venegas, Blane Heffron)

PROSPECT Collaboration

