PROSPECT's latest results for Sterile Neutrino Oscillation search

Jose Palomino On behalf of Prospect collaboration

DNP 2020

October 30th, 2020

Motivation: Reactor Antineutrino Anomaly (RAA)

- - eV-scale mass splitting.

Physics Goals There are not precise measurements at very short baseline.

Existing measurement from 1981 ILL experiment (~5k events).

Search for short-baseline sterile neutrinos:

- Few meters baseline variation affects the predicted spectrum assuming sterile oscillations.
- Compact research reactor is necessary to prevent washing out oscillation.
- **Reactor-model independent search for oscillations** throughout the detector.

ILL, from e spectrum et al., calculation

Measurement of ²³⁵U antineutrino spectrum:

- High energy resolution.
- High statistics.
- Have high enriched uranium cores: 235U only.

*PROSPECT April 2020 Collaboration Meeting Photo

Reactor Core highly-enriched (HEU): >99% of v_e flux from ²³⁵U fission:

- Power: 85 MW
- **Core shape: cylindrical**
- Size: h=0.5m d=0.4m
- **Duty-cycle: 24 days cycle**

 \mathcal{O}

scintillator works as particle identification.

- it can distinguishes gamma interactions, neutron capture and nuclear recoils.
- **Essential to remove cosmogenic** neutrons background.

IBD detection with ⁶LiLS

- 1-10 MeV β +-like prompt signal (ionization and annihilation of positron).
- Followed by ~50 μ s delayed neutron (~0.55 MeV) capture on ⁶Li.
- **6LiLS ideal for neutron tag in compact detector** as decay is highly localized in space within a segment.

IBD Selection

- Time+position-coincident IBD e+ and n signals
- Prompt: IBD e+-like PSD+energy
- Delayed: n-⁶Li PSD+energy+topology
- 12 Prompt Energy[MeV] • Reject if coincident with cosmic μ/n
 - Require signals to occur in fiducial segments
 - Primary cosmic neutrons account for most of the remaining IBD-like background

Oscillation Strategy

No obvious deviations from flat no-oscillation scenario

Oscillation Search: Results

- Compare measured, predicted spectrum ratios for different (Δm^2_{41} , sin²2 θ_{14}): $\chi^2_{min}(\Delta m^2, \sin^2 2\theta) = \mathbf{\Delta}^{\mathrm{T}} \mathbf{V}_{\mathrm{tot}}^{-1} \mathbf{\Delta}$
- Uncertainty covariance matrix V_{tot} = V_{sys} + V_{stat}
 - Statistics are the dominant sensitivity limiter
- Best-fit x²/NDF of 119.3/142 at $(\Delta m^{2}_{41}, sin^{2}2\theta_{14})$ $= (1.78 \text{ eV}^2, 0.11)$
- Pictured: Δx^2 with respect to this best-fit point
- **Reactor Anomaly** $\chi^2 = |35.|$
- Data $\chi^2 = 19.3$

No oscillation $\chi^2 = 123.3$

 $\sin^2 2\theta$

- phase space.
 - RAA best-fit excluded: 98.5% C.L.

Summary

- sensitivity in the high- $\Delta m2$ regime.
- The 'reactor antineutrino anomaly' best-fit is excluded at 2.5 σ CL.
- No evidence for sterile neutrino oscillations is found.
- oscillation measurement in the future. (EG.00004 X. Zhang)
- increase its measurement precision (EG.00005 H. Pieter)
- Check out these other PROSPECT talk(s) (EG00007 A. Delgado)

• An analysis of all PROSPECT reactor neutrino data has increased sterile neutrino

PROSPECT's current dataset will provide a substantially improved spectrum and

PROSPECT is pursuing upgraded detector deployment at HFIR that will further

• Latest Antineutrino Spectrum Measurement at PROSPECT (EG.00002 B. Foust)

11

Backup Slides

12

Systematics

Parameter	Section	Nominal Value	Uncertainty	Correlations
Absolute background normalization	VIB, VID	-	1.0%	Correlated between energy
Absolute n -H peak normalization	VID	-	3.0%	Correlated between energy
Relative signal normalization	VC	-	5%	Correlated between energy
Baseline uncertainty	II	-	10 cm	Correlated between energy
First-order Birks constant	IV B	0.132 MeV/cm	0.004 MeV/cm	Correlated between basel
Second-order Birks constant	IV B	0.023 MeV/cm	0.004 MeV/cm	Correlated between basel
Cherenkov contribution	IV B	37%	2%	Correlated between basel
Absolute energy scale	IV B	-	0.6%	Correlated between basel
Absolute photostatistics resolution	IVC	-	5%	Correlated between basel
Absolute energy leakage	IVD	-	8 keV	Correlated between basel
Absolute energy threshold	IV B, III G		5 keV	Correlated between basel
Relative energy scale	III H, IV B	-	0.6%	Uncorrelated between ba
Relative photostatistics resolution	III H, IV C	-	5%	Uncorrelated between ba
Relative energy leakage	IVD	-	8 keV	Uncorrelated between ba
Relative energy threshold	IV B, III G	-	5 keV	Uncorrelated between ba
Reflector panel thickness	IV B	1.18 mm	0.03 mm	Uncorrelated between ba

- The diagonal (statistical uncertainties) is clearly dominant
- Biggest systematics impact: relative segment normalization uncertainty, which effects low-dm2 values in particular

Position-Energy bin

14

Δm²₄₁ [eV²]

- PROSPECT and STEREO dominate
 > 3 eV²
- DANSS and NEOS dominate at < 3 eV²
- Full PROSPECT-II dataset will provide best coverage above ~1.5 eV²

Global

