

A Novel Calibration Scheme of Effective Volume in a Large Segmented Liquid Scintillator Antineutrino Detector

Jim Napolitano, Temple University For the PROSPECT Collaboration

> APS DNP 2018 Kona, Hawaii Talk CN.00003

Fifth Joint Meeting of the Nuclear Physics Divisions of the APS and the JPS 第5回 日米物理学会 合同核物理分科会

OCTOBER 23-27, 2018

PROSPECT: Two Goals

See M. Mendenall, Talk LA.00001, Saturday morning

- (1) Search for sterile neutrino oscillations in with Δm^2_{14} near 1eV² near a reactor core and a highly segmented detector
- (2) Perform a precision measurement of the neutrino spectrum from a reactor core made of highly enriched in ²³⁵U

PROSPECT@HFIR

227Ac Calibration Scheme

D. Berish, D. Jones (Temple), D. Jaffe (BNL)

<u>The idea</u>: Spike the LiLS with a tiny amount of ²²⁷Ac and monitor each segment separately with ²¹⁹Rn \rightarrow ²¹⁵Po+ α \rightarrow ²¹¹Pb+ α decays

Easy to identify RnPo's

Prototype Measurements

Discussed by D. Berish at DNP 2017; NIM paper in progress

Does actinium dissolved into the LiLS...

- ... adsorb onto materials into the neutrino detector?
- ... produce an intolerably high background?
- ... degrade the performance of the scintillator?

All answers are "No", based on two extended studies:

Controlled adsorption w/high ²²⁷Ac concentration Glass vials containing samples of all materials in contact with LiLS in full scale detector

Spike in the P50* PROSPECT prototype

Measured activity over several months in two-segment detector, also allowing us to test relative rate stability * See JINST 13 (2018) no.06, P06023

²²⁷Ac Detection Efficiency

- Cuts are made in Energy, PSD, Δz , and Δt in each segment
- Fits are performed on sample to determine what is missed
- Example: Energy distribution for "prompt" and "delayed":

Efficiency Compilation

Integrated Rates over Time

Results: Segment Rate

- Segment to segment variations in volume × efficiency
- Small downward trend towards the top of the detector
- <u>Top row</u> is systematically low

Results: Stability monitor

The ²²⁷Ac spike provides some unique opportunities to monitor the detector over time.

For example, both alpha particles are at the same place, so we can use this to monitor position resolution:

Other performance monitors (eg calibrations and resolution for energy and pulse shape) are being studied.

Conclusions

Dispersing ²²⁷Ac through the scintillator provides a useful monitor of segment volume × detector efficiencies.

The ²²⁷Ac rate decreases over time at a rate consistent with the ²²⁷Ac lifetime. This analysis is continuing.

Additional benefits of this scheme are identified, including a monitor over time of important scintillator parameters.

The PROSPECT Collaboration

Ten Universities, Four National Laboratories, ≈70 Collaborators

