



## Joint Isotope-Dependent Analysis of the Daya Bay and PROSPECT Reactor Antineutrino Spectra

July 12, 2021 Jeremy Gaison, Yale University, Wright Laboratory DPF 2021

#### Model - Measurement Disagreements

- Recent measurements of the neutrino energy spectrum from nuclear reactors deviates from model predictions
- What are the contributions from each fissile isotope?
- Deficiencies in the model prediction / input databases?
- More precise spectral measurements are
  needed to belo





Daya Bay Measurement

D. Adey et al., Phys Rev Lett 123, 111801

#### Reactor Measurements

- Neutrinos identified via inverse beta decay (IBD)
- Detect positron events in coincidence with neutron events as tagged by neutron capture agent to determine neutrino energies
- Multiple recent experiments have measured <sup>235</sup>U neutrino energy spectra

Daya Bay



STEREO\*

3



\*More information on joint PROSPECT + STEREO analysis in next talk by B. Foust

## Daya Bay

- Gd-loaded scintillator
- Multiple monolithic detectors
- Hundreds of meters from source
- 3.5 million antineutrinos detected
- Measurement of Low Enriched Uranium (LEU) power reactors with evolving fuel composition
- <sup>235</sup>U spectrum extracted from full measured spectrum using isotope fission fraction information and model constraints on <sup>238</sup>U and <sup>241</sup>Pu





### PROSPECT

- Li-loaded liquid scintillator
- Single, segmented detector
- 96 days of reactor-on data taking
- 50,000 antineutrinos
- ~10m from HEU reactor, direct measurement of <sup>235</sup>U



M. Andriamirado et al., Phys Rev D 103, 032001

# Prompt Energy Definitions

- Published neutrino spectra are in different energy spaces, and must be transformed in order to compare and combine
  - Daya Bay: positron energy
  - PROSPECT: visible energy in detector
- Measurements cannot be directly compared as is, but can be mapped from one energy space into the other through detector response functions

$$\boldsymbol{R}^{\mathrm{map}} = \boldsymbol{R}^{\mathrm{PRO}} (\boldsymbol{R}^{\mathrm{DYB}})^{-1}$$

## **Prompt Shape Compatibility**

- PROSPECT rate scaled to match Daya Bay
- $\chi^2$ /dof = 25.4/31
- p-value of 0.75
- Daya Bay and PROSPECT <sup>235</sup>U measurements in good agreement



 Daya Bay total spectrum grouped by fission fraction and used to deconvolve <sup>235</sup>U and <sup>239</sup>Pu contributions



D. Adey et al., Phys Rev Lett 123, 111801

 Pure <sup>235</sup>U measurement from PROSPECT constrains Daya Bay isotopic deconvolution





- New results consistent with previous results
- Local deviations from scaled model (2 MeV wide windows) increase by 0.2-0.5σ at all energies for
  <sup>235</sup>U
- No significant change for <sup>239</sup>Pu



 Relative shape uncertainty of <sup>235</sup>U improves to 3%, no significant change to <sup>239</sup>Pu shape uncertainty

Isotopic degeneracy improved by ~20%

### **Unfolded Spectra**

- Deconvolved spectra unfolded and regularized via Wiener-SVD\* technique
- A<sub>c</sub> smearing matrix encodes effect from unfolding regularization into any model
- Rate constraint from Daya Bay
- \*<u>W. Tang et al, JINST 12, P10002 (2017)</u>



### Conclusions

- Precision measurements needed to resolve tension between current models and measurements of reactor neutrino spectra.
- Daya Bay and PROSPECT <sup>235</sup>U measurements are compatible with each other.
- A jointly deconvolved reactor antineutrino spectrum improves both <sup>235</sup>U shape uncertainty to 3% and <sup>235</sup>U-<sup>239</sup>Pu correlations are reduced by ~20% from Daya Bay-only results.





#### **Thanks!**

See Other PROSPECT Talks:

Latest Reactor Antineutrino Spectrum and Boosted Dark Matter Results: P. Weatherly Reactor Position Reconstruction Study: D. C. Venegas-Vargas Joint Analysis by PROSPECT and STEREO: B. Foust Physics Opportunities with a PROSPECT Upgrade: R. Carr

