Joint Isotope-Dependent Analysis of the Daya Bay and PROSPECT Reactor Antineutrino Spectra

July 12, 2021
Jeremy Gaison, Yale University, Wright Laboratory
DPF 2021
Model - Measurement Disagreements

- Recent measurements of the neutrino energy spectrum from nuclear reactors deviates from model predictions

- What are the contributions from each fissile isotope?
- Deficiencies in the model prediction / input databases?
- More precise spectral measurements are needed to help resolve these issues
Reactor Measurements

- Neutrinos identified via inverse beta decay (IBD)
- Detect positron events in coincidence with neutron events as tagged by neutron capture agent to determine neutrino energies
- Multiple recent experiments have measured ^{235}U neutrino energy spectra

Daya Bay PROSPECT STEREØ*

More information on joint PROSPECT + STEREØ analysis in next talk by B. Foust
Daya Bay

- Gd-loaded scintillator
- Multiple monolithic detectors
- Hundreds of meters from source
- 3.5 million antineutrinos detected
- Measurement of Low Enriched Uranium (LEU) power reactors with evolving fuel composition
- ^{235}U spectrum extracted from full measured spectrum using isotope fission fraction information and model constraints on ^{238}U and ^{241}Pu

D. Adey et al., Phys Rev Lett 123, 111801
PROSPECT

- Li-loaded liquid scintillator
- Single, segmented detector
- 96 days of reactor-on data taking
- 50,000 antineutrinos
- ~10m from HEU reactor, direct measurement of ^{235}U
Prompt Energy Definitions

• Published neutrino spectra are in different energy spaces, and must be transformed in order to compare and combine
 • Daya Bay: positron energy
 • PROSPECT: visible energy in detector

• Measurements cannot be directly compared as is, but can be mapped from one energy space into the other through detector response functions

\[R_{\text{map}} = R_{\text{PRO}} (R_{\text{DYB}})^{-1} \]
Prompt Shape Compatibility

- PROSPECT rate scaled to match Daya Bay
- χ^2/dof = 25.4/31
- p-value of 0.75
- Daya Bay and PROSPECT ^{235}U measurements in good agreement

Graph

PROSPECT prompt energy [MeV]

Daya Bay

PROSPECT

$\sigma \times 10^{-13}$ [cm2/fission/MeV]

Ratio

PROSPECT prompt energy [MeV]

e-Print: arXiv:2106.12251
Power Reactor Deconvolution

- Daya Bay total spectrum grouped by fission fraction and used to deconvolve 235U and 239Pu contributions

D. Adey et al., Phys Rev Lett 123, 111801
Power Reactor Deconvolution

- Pure ^{235}U measurement from PROSPECT constrains Daya Bay isotopic deconvolution

\[\text{PROSPECT }^{235}\text{U} \]

\[\text{Fission Fraction} \]

\[\text{PROSPECT }^{239}\text{Pu} \]

\[\text{Fission Fraction} \]

\[D. \text{ Adey et al., Phys Rev Lett 123, 111801} \]
Power Reactor Deconvolution

- New results consistent with previous results
- Local deviations from scaled model (2 MeV wide windows) increase by 0.2-0.5σ at all energies for ^{235}U
- No significant change for ^{239}Pu

New Results

`e-Print: arXiv:2106.12251`
Power Reactor Deconvolution

Difference from Previous Results

- Relative shape uncertainty of 235U improves to 3%, no significant change to 239Pu shape uncertainty
- Isotopic degeneracy improved by ~20%

e-Print: arXiv:2106.12251
Unfolded Spectra

- Deconvolved spectra unfolded and regularized via Wiener-SVD* technique

- A_c smearing matrix encodes effect from unfolding regularization into any model

- Rate constraint from Daya Bay

*W. Tang et al, JINST 12, P10002 (2017)
Conclusions

• Precision measurements needed to resolve tension between current models and measurements of reactor neutrino spectra.

• Daya Bay and PROSPECT 235U measurements are compatible with each other.

• A jointly deconvolved reactor antineutrino spectrum improves both 235U shape uncertainty to 3% and 235U-239Pu correlations are reduced by ~20% from Daya Bay-only results.
Thanks!

See Other PROSPECT Talks:

- Latest Reactor Antineutrino Spectrum and Boosted Dark Matter Results: P. Weatherly
- Reactor Position Reconstruction Study: D. C. Venegas-Vargas
- Joint Analysis by PROSPECT and STEREO: B. Foust
- Physics Opportunities with a PROSPECT Upgrade: R. Carr