

June 25 2020

On Behalf of the **PR©SPECT** Collaboration

PROSPECT Collaboration, arXiv:2006.11210 (2020)

PROSPECT April 2020 Collaboration Meeting Photo

Motivation: Oscillations

- Q: Do eV-scale sterile neutrinos exist, and do they mix with the known neutrino flavors?
 - Reactor experiments provide hints of varying nature and confidence level
 - Short-baseline reactor experiments are the strongest existing method for probing sterile mixing parameter U_{e4}
 - Need to address all ∆m² to ~%-level to enable unambiguous interpretation of LBL CPV+other measurements <u>D. Dutta et. al., JHEP 11:122 (2016)</u> S.Agarwalla et. al., PRL 118 (2017)

Many others...

$$\begin{bmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \\ \nu_s \end{bmatrix} = U \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \\ \nu_4 \end{bmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \\ U_{s1} & U_{s2} & U_{s3} \end{bmatrix} \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \\ U_{\tau 4} \end{bmatrix}$$

Motivation: $^{235}U \overline{\nu}_e$ Spectrum

- Experiments at low-enriched (LEU) cores detect spectra at odds with current models
 - Particularly bad agreement at high-neutrino energy (a 'bump'?)
- Q:What is the nature of this 'bump' feature?
 - Caused by mis-modeling of all fission products' yields? decays?
 - Only some fission products?
 - Products specific to certain fissioning isotopes, like ²³⁵U? ²³⁸U?
- Learn by burning different fuels: in addition to <u>LEU</u>, measure V_e from <u>highly-</u>
 <u>enriched (HEU)</u> cores

PROSPECT Experimental Layout PRESPECT

- A 4-ton ⁶Li-doped PSD-capable segmented LS detector at the HFIR research reactor
 - HEU reactor: HFIR burns only ²³⁵U
 - Very short baseline: 6.7-9.2 meters
 - Compact core: <50cm height, diameter
 - Challenging environment: < I mwe overburden, copious reactor γ

PROSPECT Design Features

5

- Detect V_e inverse beta decays (IBDs)
- Prompt e⁺ provides
 V_e energy estimate
- Localized n-⁶Li capture signal
- Prompt, delayed pulse shapes differ from most common background classes
- Segmentation enables baseline determination and topology cuts

Detector Calibration

New Publication: IBD Selection

- Prompt: IBD e+-like PSD+energy
- Delayed: n-6Li PSD+energy+topology
- Reject if coincident with cosmic μ/n
- Require signals to occur in fiducial segments
- Reject candidates from 36 fiducial segments experiencing PMT current instabilities
- Primary cosmic neutrons account for most
 of the remaining IBD-like background

PR©SPE

New Publication: IBD Dataset

X. Lu: Poster #158

- 95.65 reactor-on calendar days, 73.09 reactor-off
- Reactor-on excess in IBD candidates in ~I-7 MeV
 - 50560±406 IBD signal events
 - 28357±18 accidental bkg events
 - 36934±221 cosmic bkg events
 - 530 IBD signal per calendar day
- Signal follows I/r² trend

New Oscillation Search: Data

- Combine data into 16 energy, 10 baseline bins
- Remove reactor model dependence by dividing each baseline's measured energy spectrum by the full-detector spectrum
 - Also correct for MC-predicted difference in response between baseline bins
- No obvious deviations from flat no-oscillation scenario

Oscillation Search: Results

J. Palomino-Gallo: Poster #408

- Compare measured, predicted spectrum ratios for different $(\Delta m^2_{41}, \sin^2 2\theta_{14})$: $\chi^2_{min}(\Delta m^2, \sin^2 2\theta) = \Delta^T V_{tot}^{-1} \Delta$
- Uncertainty covariance matrix $V_{tot} = V_{sys} + V_{stat}$
 - Statistics are the dominant sensitivity limiter
- Best-fit χ²/NDF of 119.3/142 at (Δm²₄₁, sin²2θ₁₄) = (1.78 eV², 0.11)
- Pictured: $\Delta \chi^2$ with respect to this best-fit point

Oscillation Search: Results

J. Palomino-Gallo: Poster #408

- Best-fit χ²/NDF of | 9.3/142
 - Null (reactor antineutrino anomaly) oscillation is 4.0 (15.8) higher in χ^2
- What does this mean?

Sterile Search: Exclusion

PR SPECT

• Use both <u>Feldman-Cousins</u> and <u>CLs</u> to convert $\Delta \chi^2$ values to statistically valid excluded regions of oscillation phase space

New ²³⁵U Spectrum Measurement PRESPECT,

B. Foust: Poster #516

- Compared spectra between baselines for oscillation search
- Integrate all baselines to produce a pure measurement of the $\overline{\nu}_e$ energy spectrum produced by ^{235}U fission products
- Compare integrated spectrum to \overline{V}_e production models

²³⁵U Spectrum: Result

Improved ²³⁵U $\overline{\nu}_{e}$ energy spectrum result

45% increase in IBD statistics over previous PRL

PROSPECT, PRL 122 (2019)

- More inactive segments produce increased cosmic background: signal:background ratio of 1.4
- Statistical uncertainties still dominate total measurement precision
 - Dominant systematic errors from energy non-linearity and dead mass uncertainties established with extensive calibration and MC simulation campaign

Reconstructed Visible Energy [MeV]

235U Spectrum: Huber Comparison PRESPECT,

- Q: Is PROSPECT consistent with Huber's ²³⁵U model?
 - Must include corrections for non-equilibrium fission products and non-fuel $\overline{\nu}_e$ contributions

PROSPECT, PRC 101 (2020)

- Spectrum normalization is left as a free fit parameter
- X²/ndf = 30.79/31
 - Good data-model agreement across the full spectrum
 - A few local regions show modest model deviations

Probing Reactor Spectra

- Q: Does PROSPECT see 5-7 MeV bump observed at low-enriched reactors?
 - **PROSPECT** feature size with respect to Daya Bay: 84% ± 39%
 - 'No ²³⁵U bump' scenario is disfavored at 2.2σ CL
 - Expect a 'big bump' (178%) in PROSPECT if ²³⁵U is its sole producer: this is disfavored at 2.4σ CL
- **PROSPECT** and Daya Bay spectra are consistent with <u>all isotopes</u> playing equal roles in the 5-7 MeV data-model disagreement

PROSPECT Prospects

Gaison: Poster #556 P. Mumm: Poster #540

17

PROSPECT-II Sensitivity Gains

90% CL, PROSPEC 1 yr Sensitivity 2 yrs Sensitivity

2 yrs Optimized Sensitivity

Current Exclusion

- PROSPECT will not take further data in its current form
- Improved analysis of the current dataset can enhance sensitivity
 - Expect up to 50% sterile osc improvement
- Joint analyses with Daya Bay and STEREO underway
- Pursuing upgraded deployment at HFIR that will address our primary physics limiter: total IBD statistics

Conclusions and Prospects

- An analysis of all PROSPECT reactor neutrino data has increased sterile neutrino sensitivity in the high- Δm^2 regime.
 - No evidence for sterile neutrino oscillations is found
 - The 'reactor antineutrino anomaly' best-fit is excluded at 2.5σ CL
- PROSPECT's measured ${}^{235}U\overline{\nu}_e$ spectrum indicates data-model discrepancies similar to those measured at LEU experiments.
 - Supports idea that spectrum mis-modeling is present for all fission isotopes
 - Compared to this scenario, 'no 235 U bump' is disfavored at 2.2 σ CL
 - We disfavor at 2.4 σ CL ²³⁵U being solely responsible for the LEU bump
- PROSPECT's current dataset will provide a substantially improved spectrum and oscillation measurement in the future
- PROSPECT is pursuing upgraded detector deployment at HFIR that will further increase its measurement precision

PROSPECT Collaboration, arXiv:2006.11210 (2020)

Backup

Experimental Layout

Detector Layout

22

NOVEMBER 17, 2017 YALE WRIGHT LAB

FINAL ROW INSTALLATION

Excluded Segments

- In prototype detector dis-assembly and in PROSPECT detector data, we observe evidence of LS ingress into sealed mineral oil-filled PMT housings
- LS interacts with circuitry in the bare voltage divider, reducing its ability to hold PMTs at their designed voltages
- Any PMTs exhibiting this anomalous behavior were turned off
- Most 'inactive segments' have one operational PMT; this should enable future use of these segments for further background rejection and possibly IBD identification

Sterile Best-Fits and CL Assignment

PROSPECT and STEREO, hep-ex[2006.13147]

- Sterile best-fits for null-osc datasets <u>often occur</u> in regions of high frequency/amplitude
- Thus, care in assigning CL is key!
 - Wilk's theorem approach will not provide proper CL. Particularly true for small or <u>high frequency</u> oscillations
 - Wilk's over-estimates null-osc exclusion by ~1 σ ; so 2.8 σ is more like <2 σ ...

Neutrino-4 and PROSPECT

27

PROSPECT and STEREO, hep-ex[2006.13147]

- Taking a different view: consider N4 exclusion at face-value
 - Updated result excludes nearly all of the 68% CL N4 favored region at 95% CL
 - PROSPECT previous PRL sterile exclusion is ~identical for L/E v. L, E binning
 - This is contrary to what is claimed in Neutrino-4's various arXiv postings; this should not be viewed as an 'advantage' of Neutrino-4's presented analysis
 - PROSPECT, STEREO worked exhaustively to prove the accuracy of detector models and background estimates. Has N4 provided the same level of rigor?

Low-Level Processing Examples

- 50 ADC (~5 PE) trigger threshold: both PMTs on a segment
- 20 ADC (~2PE) zero-suppression threshold
 - Only read out waveform chunks in the vicinity of 20+ ADC sections
- FADC low-level pulse processing quantities: baseline, pulse area, PSD peak + tail, timestamps

Segment Pulse Calibration

29

collected light [PE/MeV] Reconstruct time using muons to equalize PMT timing offsets 600 Reconstruct z-position using timing+charge offsets between PMTs in response to corner-clipping muons 400 Reconstruct energies by correcting for z-variation in n-6Li signal amplitude 200 Calibrate out time-dependence of reconstructed energy and position С -500 500 0 position [mm] PMT pair time offset [ns] segment y 10 ate [mHz/bin] PMT delta timing [ns] 10 0.3 8 6 0.2 0 4 0.1 5 2 -10 0 10 5×10³ 10 10⁴ 2×10⁴ 10⁵ 0 5 pulse area $\sqrt{S_0S_1}$ [ADC] segment x

Segment Similarity

- Segments show similar response for a variety of pulse position, energy reconstruction metrics
- Using RnPo from ²²⁷Ac, segment volumes look identical to the few-%-level

Energy Scale Calibration Extras

- For calibration sources, consistent data-MC energy scale agreement across all energy ranges: non-linearity model is clearly successful
- AmBe high-energy gamma data-MC energy agreement to <0.5%
- Data-model energy scale agreement is consistent in time to percent-level
- ~5% fitted photostatistics resolution

Energy Scale Calibration Extras

- Gamma energy leakage/loss also properly modeled in MC
- Checked via Na22 source deployment and MC modelling:
 - Compare for deployment along edge/center calibration axes
 - Compare for deployment along axis z-edge / z-center
 - For a single deployment, compare energy deposition in different segments
- Energy model uncertainty related to energy leakage: <8keV

PR©SPE

IBD MC: Predicted Energy Response Respo

- Full-detector IBD prompt energy response modeled by PG4 IBD MC
- Substantial off-diagonal contribution from energy leakage into dead/non-fiducial segments, optical grid walls

0.95

0.9

0.85

0.8

0.75

0.7

0.65

seament x

124 125

Efficiency: Segment Variation

segment y

- Largest source of efficiency variation: neutron mobility into dead segments
- Segmentation allows excellent characterization of this effect.
 - Neutrons from Cf-252, IBDs
- Sub-dominant effects: IBD e+ mobility, segment volume

Efficiency: Time Variation

- Largest source of efficiency time-variation: veto cuts
 - Due to reactor gammas, some vetoing signals have on-off rate variation (neutron-capture signals and neutron-proton recoils)
 - Results in on-off veto time variation of as much as $\sim 5\%$
 - Long-term variation from slow PSD performance degradation
- Sub-dominant effects: small drifts in nLi capture time/fraction

Accidental Backgrounds

- Random coincidence of gamma and nLi-like signal
 - Variation in delayed signals from gammas bleeding into nLi PSD region
- Estimate precisely using off-window method
 - IBD offset by few hundred <u>us</u>, accidentals offset by I-2 <u>seconds</u>

Backgrounds: Rates, Pressure Variation Respect

- Many background categories vary with reactor status
- Others vary with atmospheric pressure
- Correct cosmogenic background for on-off pressure variations
- Due to equal on-off integrated pressure, correction is a <0.1% normalization effect.

Event Type	Associated Veto	Reactor-Off Rate (Hz)	On-Off Offset (Hz)	Coefficient (%/mbar)	On-Off Scaling (%)
single cluster	Pile-up	1628	6708	-	-
single <i>n</i> - <i>p</i>	Recoil	46.8	116	-	-
single <i>n</i> -Li	Neutron	11.5	2.85	-0.57 ± 0.23	0.025 ± 0.015
single muon	Muon	497	-2.3	$-0.16 \pm < 0.01$	0.006 ± 0.000
<i>n</i> -Li, <i>n</i> -Li	-	0.012	8.5e-4	-0.53 ± 0.01	0.022 ± 0.024
<i>n-p</i> , <i>n</i> -Li	-	0.33	4.2e-4	-0.80 ± 0.02	0.033 ± 0.007
IBD-like	-	0.0052	7.1e-3	-0.70 ± 0.01	0.028 ± 0.048

Correlated Backgrounds

- Inelastic scatter off C-I2 gives 4.5MeV gamma; then captures on ⁶Li
- n-p scatter in low side of high PSD band; then capture on ⁶Li
- Multi-neutron background:

PR©SPE

Non-Cosmic Correlated Background BRESPECT

- Biggest estimated contributor: photo-neutron interactions in exterior lead shielding
 - High-energy reactor gamma releases a neutron from lead
 - Gammas and neutron reach inner detector
- Simulations show this background is negligible
 - Measure high-energy gammas in target region
 - Extrapolate this to a rate at the lead shielding using MC
 - Simulate these gamma fluxes to estimate frequency of IBD-like signals
 - Expected rate: 4/day in non-fiducial volume; <0.1/day in fiducial volume
- All other reactor neutron/gamma-produced backgrounds are estimated to be far sub-dominant to this one.

Background Cross-Checks

- Comparing different reactor-off periods gives consistent spectra
- Comparing non-IBD event classes between on and off yields %-level excesses/deficits
 - Appears consistent with a detector response time-dependence effect
 - Precise cause not determined; so, assign additional %-level background uncertainty

Signal Cross-Checks

Osc Systematics

- Just clearly dominant organization uncertainty, which effects low-dm, and the segment normalization values in particular

Osc Analysis Systematics

Parameter	Section	Nominal Value	Uncertainty	Correlations
Absolute background normalization	VIB, VID	-	1.0%	Correlated between energies and baselines
Absolute n -H peak normalization	VID	-	3.0%	Correlated between energies and baselines
Relative signal normalization	VC	-	5%	Correlated between energies
Baseline uncertainty	II	-	10 cm	Correlated between energies and baselines
First-order Birks constant	IV B	0.132 MeV/cm	0.004 MeV/cm	Correlated between baselines
Second-order Birks constant	IV B	0.023 MeV/cm	0.004 MeV/cm	Correlated between baselines
Cherenkov contribution	IV B	37%	2%	Correlated between baselines
Absolute energy scale	IV B	-	0.6%	Correlated between baselines
Absolute photostatistics resolution	IVC	-	5%	Correlated between baselines
Absolute energy leakage	IVD	-	8 keV	Correlated between baselines
Absolute energy threshold	IV B, III G		5 keV	Correlated between baselines
Relative energy scale	III H, IV B	-	0.6%	Uncorrelated between baselines
Relative photostatistics resolution	III H, IV C	-	5%	Uncorrelated between baselines
Relative energy leakage	IVD	-	8 keV	Uncorrelated between baselines
Relative energy threshold	IV B, III G	-	5 keV	Uncorrelated between baselines
Reflector panel thickness	IV B	1.18 mm	0.03 mm	Uncorrelated between baselines

Osc Signal

43

Oscillation: Relative Response Differencesspect

• At most dm2, oscillations look much different than predicted relative response differences between baselines.

Osc Result Global Context

- PROSPECT and STEREO dominate
 > 3 eV²
- DANSS and NEOS dominate at < 3 eV²
- Full PROSPECT-II dataset will provide best coverage above ~1.5 eV²

Osc Result Global Context

- Need to cover all dm2 to ~3% precision to avoid CPV measurement ambiguities
- Daya Bay will achieve this below ~0.3 eV²
- KATRIN will eventually achieve this for ~20+ eV²
- PROSPECT-II is needed to get the needed coverage in the >few eV^2 regime.
- NEOS and DANSS cannot achieve this.

DUNE and PROSPECT

- DUNE CPV results will be hard to interpret without nailing down θ_{24} and θ_{14} to better than ~5 degrees.
 - Could observe no CPV from sterile and active sector CPV cancelling!
 - If we observe CPV, what δ_{xx} are we actually measuring?
- DUNE baseline beam has changed in last few years, but I'm fairly sure these issues are still in play...

B. Kayser, et al. arxiv:[hep-ph]1508.06275

PR©SPE

Non-Fuel Contributions

- Non-negligible neutrinos from activation of Al-28 in core structure, production of He-6 in beryllium reflector
- ~9% contribution at lowest IBD energies

PROSPECT, PRL 122 (2019)

Effect is stable within 0.1% at cycle beginning and end.

48

DUNE and PROSPECT

- DUNE CPV results will be hard to interpret without nailing down θ_{24} and θ_{14} to better than ~5 degrees.
- PROSPECT-I plays a role in bridging an important gap between other highly-sensitive probes of U_{e4}
 - Daya Bay below, tritium beta endpoint experiments (KATRIN)above
 - Note: both DYB and KATRIN limits will get better in future, especially KATRIN
- Also clear benefits from joint oscillation analyses

Spectrum Systematics

Reconstructed Visible Energy [MeV]

Spectrum Analysis Systematics

Parameter	Section	Uncertainty	Description
Background Normalization	VIB, VID	1%	Accounts for variation between reactor-off periods
n-H Peak	VID	3%	Accounts for uncertainty on background subtraction in the n -H peak region
Detector Non-linearity	IV B	0.002	Uncertainty for Birks non-linearity in energy deposition
Cherenkov Contribution	IV B	0.41	Uncertainty on Cherenkov contributions to collected photons
Energy Scale	IV B	0.004	Uncertainty on linear energy scale
Energy Resolution	IVC	5%	Uncertainty in photostatistics contribution to energy-dependent resolution
Energy Loss	IV D	8 keV	Uncertainty in energy lost by escaping 511 keV γ -rays
²⁸ Al Activation	IX A	100%	Uncertainty in the amount of ²⁸ Al contributing to the spectrum
Non-equilibrium Correction	IXA	100%	Uncertainty in extrapolating $\overline{\nu}_e$ contribution from long-lived fission daughters
Panel Thickness	IV B	0.03 mm	Uncertainty in mass of the panels separating segments
Z Fiducial Cut	V C	25 mm	Uncertainty in the position of events near the edge of the fiducial volume
Energy Threshold	IV B, III G	5 keV	Uncertainty in the segment-by-segment energy threshold cut

²³⁵U Spectrum: Dial-A-Bump

- Q: Does PROSPECT see 5-7 MeV bump observed at low-enriched reactors?
 - Model feature by fitting to the Daya Bay V_e spectrum a Gaussian on top of the Huber-Mueller prediction
 - Apply same Gaussian to the Huber ²³⁵U prediction, while fitting its amplitude to PROSPECT's data
 - Gaussian center and width and fixed, while amplitude A is fitted.
 - Also fit a floating normalization of total Huber+Gaussian spectrum

Spectrum Result Global Context: DYBROSPECT,

- Daya Bay sees U235 spectrum anomaly, but Pu239 uncertainties are too large to spot similar feature there
- PROS+DYB joint analysis helps to transfer more of DYB's statistical power to Pu239 spectrum
- Currently working with DYB on a joint DYB-PROS spectrum analysis.

Spectrum Result Global Context: RENESPECT

- RENO claims that 'bump size' increases with increasing U235 fission fraction
 - This would happen only if U235 has a 'larger bump' than other fission isotopes
 - Appears to contradict PROSPECT's 'bump analysis' outcomes (slide 16)
 - Best-fit red slope indicates that Pu239 spectrum contains a '5-7 MeV dip' (i.e. the intercept at F235=0 is below zero: -0.55%).
 - Best-fit red slope also indicates PROSPECT should see a ~25% excess in the 5-7 MeV region (A~2.0-2.5 in slide 16). This is not compatible with PROSPECT data.

Reactor Direction in PROSPECT PRESPECT,

- Downstream segments see substantially more IBD neutrons
- Effect is predicted by IBD MC properly taking into account the direction of neutrino propagation
- Indicates ability of PROSPECT-style segmented detector to statistically identify reactor location

Prompt/Delayed Signal Orientation

Reactor Fluxes and Nuclear Data PRESPECT,

- How do reactor neutrino fluxes matter to nuclear data people?
 - Have the capability to act as a 'validation' dataset for the nuclear data pipeline; normally nuclear folks think of fission criticality experiments playing this role
 - 'If we improve some aspect of the nuclear data, do we end up getting ab into predictions closer to the measured neutrino flux?'
 - <u>https://arxiv.org/abs/1904.09358</u>
 - 'Do we properly predict the evolution in IBD yield of an LEU core?' —> Gives a unique window onto how well 235-239 yield differences are measured/understood
 - <u>https://arxiv.org/abs/1707.07728</u>
 - The authors in these papers are all hardcore nuclear theory / nuclear data folks... Not just HEP neutrino fan-boys/girls...
 - A unique opportunity to learn about U-238 and its nuclear data
 - U238 fission yields are very poorly measured; this why no model builder scoffs when we put 10-15% error bars on the 238 ab initio predicted fluxes...
 - Reactor neutrino anomalies represent excuses for nuclear experimentalists to do nuclear data experimental measurements...
 - <u>https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.102503</u>
 - <u>https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.092501</u>

Reactor Neutrino Monitoring Advances Spect

• Last few decades have brought major advances in realized tech:

1950s: First Detection; ~1000 counts in 1 month; 5 background counts per 1 antineutrino count (S:B 1:5)

1980s: Bugey: ~1000 counts per day, S:B 10:1, but only underground. flammable/corrosive solvent detector liquids

2000s: SONGS: ~230 counts per day, 25:1 S:B, but must be underground. 'semi-safe' detector liquid

NOW: PROSPECT detector: ~750/day from only 80MW reactor, S:B 1:1 on surface, 'safe' plug-n-play detector 56