

PROSPECT-II calibration strategy

Jeremy Lu

On behalf of the PROSPECT Collaboration

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Past(Tue): FK.00005: Precise Measurement of Reactor Antineutrino Spectra from Joint Analyses of PROSPECT, STEREO, and Daya Bay

Benjamin T Foust FK.00006: PROSPECT-II: Physics goals with an upgraded precision reactor oscillation and spectrum neutrino experiment Thomas J Langford FK.00007: Working Towards an Absolute Reactor Antineutrino Flux Measurement using PROSPECT-I Data

EK.00007: Working Towards an Absolute Reactor Antineutrino Flux Measurement using PROSPECT-I Data Paige Kunkle FK.00008: Reactor Background Measurements at HFIR in Support of the PROSPECT-II Experiment

BLAINE HEFFRON Poster Session: HA 00031: Directional Neutrino I

HA.00031: Directional Neutrino Detection with PROSPECT Manjinder Oueslati Fall Meeting of the Division of Nuclear Physics of the American Physical Society

DNP 2021

October 11-14, 2021

11010101100

Outline

- PROSPECT-I introduction
- **PROSPECT-I** calibration
- Changes in PROSPECT-II upgrades
- Results of R&D study on P-II calibration
- Summary

PROSPECT experiment

PROSPECT detector:

- Short baseline reactor neutrino experiment located at HFIR, ORNL
- ~4 ton ⁶Li-loaded liquid scintillator detector
- Optically segmented into 14 x 11 identical detectors
- In-situ internal calibration access
- Less than ~1m w.e. overburden

High Flux Isotope Reactor: HFIR

- 85 MW research reactor
- Compact core
- Fresh highly-enriched ²³⁵U fuel

Jeremy Lu

Inverse Beta Decay as neutrino signal

- Distinctive spatial/temporal correlation
- Particle ID capable LS via PSD
- Segment fiducialization, veto cuts, etc

- 14x11 segments and 5x7 source tubes
- ~5° tilted pinwheels house source capsules transported by stepper motor

Table 1

Calibration sources and their uses.

Source	Туре	γ Energy (MeV)	Primary purpose	Rate
¹³⁷ Cs	Gamma	0.662	Segment comparison	0.1 µCi
²² Na	Gamma	2×0.511, 1.275	Positron, edge effects	0.1 µCi
⁶⁰ Co	Gamma	1.173, 1.332	Energy scale	0.1 µCi
²⁵² Cf	Neutron	2.223 (n-H capture)	Neutron response	866 n/s
AmBe	Neutron	-	Neutron response	70 n/s

5

P-I Calibration result

- Internal radioactive sources + cosmogenic
 ¹²B events for energy calibration
- Detector energy non-linearity model is best fitted to data in both spectrum and event multiplicity

 Energy scale calibration ensures the energy reconstruction within +/-1% uncertainty and consistent across the data-taking period

OAK RIDGE National Laboratory

Preliminary detector design for PROSPECT-II

- Several PROSPECT PMTs showed current instability
- Separate PMTs from liquid scintillator volume to improve long term stability
- Simple and robust to be redeployed at other reactor sites

External calibration source

External calibration performance simulation

- Can external calibration perform as well as we had in PROSPECT?
- What is level of degradation in calibration parameter precision?

Validation R&D study based P-I simulation/data

External calibration performance simulation

- Manually switch off certain segments in the analysis
- Calibration sources are effectively <1cm outside the fiducial volume

CAK RIDGE National Laboratory

Methodology

- The non-linearity detector response model is not directly simulated via the computational-resource-heavy process of optical photon production and propagation.
- Instead, fractional conversion of true deposited energy to scintillation light is calculated step-by-step during GEANT4 propagation of the particle using parametrization of these physics processes:

• Best fit response model is determined by minimizing data-MC chi2 for both spectrums and event multiplicity in parameter space (kB,kC)

$$\chi^2_{\text{data-MC}} = \sum_{\gamma} \chi^2_{\gamma} + \sum_{\text{multi}} \chi^2_{\text{multi}} + \chi^2_{^{12}\text{B}},$$

Preliminary results

• Chi2 map in parameter space (kB,kC)

Internal calibration

External calibration

- The best fit response models are compatible with each other.
- Quantify how well the model parameters are constrained.

Configuration	А	kB1	kC
Internal	1.008 ± 0.002	0.172 ± 0.003	0.377 ± 0.034
External	1.006 ± 0.003	0.167 ± 0.007	0.361 ± 0.058

Externa

Preliminary results

• Both calibration setups show great agreement in spectrum and event multiplicity.

Internal

 Toy-model generated covariance matrix and compare energy model uncertainty, still dominated P-I statistics

l≥^{=0.3}

0.25

AK RIDGE

National Laboratory

Summary

- PROSPECT-I collected over ~50k IBD events in less than a year and updated oscillation and spectrum analysis on the way(next speakers).
- PROSPECT-I deploys internal calibration campaign that allows event reconstruction at sub-percent level precision.
- PROSPECT-II detector aims to improve long term stability with simpler and more rigid design.
- This R&D study evaluate the external-source-only performance for PROSPECT-II calibration.
- External calibration demonstrates promising performance with simplified P-II geometry and will improve in actual P-II detector.

PROSPECT

14 Institutions, 70 collaborators

Yale

<u>Past(Tue):</u>

 FK.00005: Precise Measurement of Reactor Antineutrino Spectra from Joint Analyses of PROSPECT, STEREO, and Daya Bay

 Benjamin T Foust

 FK.00006: PROSPECT-II: Physics goals with an upgraded precision reactor oscillation and spectrum neutrino experiment

 Thomas J Langford

 FK.00007: Working Towards an Absolute Reactor Antineutrino Flux Measurement using PROSPECT-I Data

 Paige Kunkle

 FK.00008: Reactor Background Measurements at HFIR in Support of the PROSPECT-II Experiment

 BLAINE HEFFRON

 Poster Session:

 HA.00031: Directional Neutrino Detection with PROSPECT

Manjinder Oueslati

Today(Wed):

LK.00006: PROSPECT-II calibration strategy Xiaobin Lu LK.00007: Improved Event Reconstruction and Spectrum Analysis using PROSPECT Antineutrino Data Christian Roca Catala LK.00008: Improved Inverse Beta Decay event selection and its impact on the PROSPECT oscillation analysis Diego C Venegas Vargas

