
Oscillation Sensitivity
• A χ2 test was applied to the simulated IBD prompt spectrum + background 

• Parameters α account for systematic uncertainties in signal, background 
• Exclusion contours were determined from the evaluation of a no-oscillation 

model with respect to a 3+1 neutrino model parametrized by (Δm241, θ14). 
• Best-fit values for sterile neutrinos  

from other experiments can be  
excluded at 99.97% CL with a  
single year of PROSPECT data. 

• Three years of PROSPECT data will 
yield high CL exclusion of a majority 
of the reactor anomaly phase space. 

• Developed covariance matrix-based fit 
reproduces these sensitivity curves; 
future functionality will fully include all 
expected systematics and correlations.
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PROSPECT is a DOE-funded multi-phase short-baseline reactor experiment that will be installed at Oak Ridge National Laboratory’s  
High Flux Isotope Reactor (HFIR).  By comparing measured antineutrino spectra from 235U fission at baselines from 7-12 meters with 
 a single detector, PROSPECT will provide new sensitivity to electron antineutrino oscillations at short baselines that is independent of the underlying reactor 
flu and spectrum model.  PROSPECT will address the current best-fit eV-scale sterile neutrino oscillation parameter space at high confidence level with a 
single year of data-taking.  This poster describes PROSPECT’s oscillation fitting framework, input parameters, and expected sensitivities. 

Motivation: The Reactor Anomaly PROSPECT Measurement Concept
• PROSPECT can resolve the reactor anomaly by probing its L/E nature 
• HFIR core provides pure 235U flux  
• Measure inverse beta decays at many baselines  

within one segmented liquid scintillator target 
• Baseline-dependent changes in prompt spectrum 

would be clear indication of sterile oscillations 
• Uncertainties in reactor flux or spectrum could not 

produce this baseline-dependent feature.

B. Littlejohn, Illinois Institute of Technology

Experimental Input Parameters

• State-of-the art reactor models predict more neutrinos than are observed 
by existing reactor antineutrino flux measurements [2,3,4]

Parameter Optimization

Two-Detector Sensitivity

• How well do we exclude the Kopp 
sterile best-fit (in σ) for various 
experimental scenarios? 

• Better baseline coverage provided by 
a moveable detector is essential 

• More statistics via a larger detector or 
better efficiency is also very helpful 

• Oscillation sensitivity is relatively 
insensitive to the chosen resolution 
and relative systematic uncertainties.

• Further space exists outside the HFIR building for  
a larger longer-baseline detector 

• 10-ton detector at ~15+ m can precisely investigate  
any oscillation signature uncovered with 1 detector

Reactor: HFIR 
• 40cm diameter, 50cm height cylinder 
• 85 MW power, 95% 235U enrichment 
• 6 cycles/year (41% up-time) 

Detector: AD1 
• 10 x 12 matrix of 1.2m-long cells 
• 14.6 x 14.6 cm square cell cross-section 
• 2940 (1480) kg target (fiducial) mass;  
• Three locations: ~7-12 meters baseline 

Signal 
• Fiducial volume only (inner cells) 
• 41% average efficiency in inner cells 
• 115,000 signal events expected per year
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Beyond 3+1 Oscillations

Ratio of Measured to Predicted Reactor Fluxes

• Are reactor flux predictions wrong?  Or were electron antineutrinos 
oscillating to sterile neutrinos before reaching these detectors? 

• New reactor measurements at short baselines can resolve this question
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Precision  
measurements 
needed here!

Background 
• Primary source: cosmics 
• 41% of down-time for 

background subtraction  
• ~3:1 signal:background 

indicated by simulations

Reactor Fission Distribution

Signal, Background vs.  Analysis Cut

• L/E distributions from short-baseline reactor experiments show that 
discovery potential also exists for other non-Standard physics 

• If a complex sinusoid in L/E is present: 3+N oscillations 
• PROSPECT also has strong capability to distinguish 3+1 from 3+N 
• Non-sinusoidal pattern in L/E could indicate CPT violation

(σ, σb, σe, σr, σb2b)  =  
(100%, 2%, 10%, 1%, 1%)
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