

PROSPECT: The Precision Reactor Oscillation and Spectrum Experiment

David E. Jaffe April 18, 2016

Many thanks to PROSPECT collaborators, especially Tom Langford (Yale) and Bryce Littlejohn (IIT), for their slides.

Neutrinos in the Standard Model

Detection of the Free Neutrino: a Confirmation

C. L. Cowan, Jr., F. Reines, F. B. Harrison, H. W. Kruse, A. D. McGuire

PROSPECT

- Neutrinos were added to the SM to address the beta-decay "anomaly"
- Successfully detected ~40 years later at the Savannah River Reactor

Neutrino Anomalies...

... Lead to Discoveries

$\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation through the earth

The Nobel Prize in Physics 2002

Raymond Davis Jr., Masatoshi Koshiba,

Riccardo Giacconi

"for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos"

sum of all ν matched solar prediction

Neutrino Oscillations

Neutrinos undergo oscillations between flavor and mass states, implying they are massive (although very light) particles.

Ex: Two Neutrino Oscillation

Parameters θ (mixing angle - amplitude) and Δm^2 (mass splitting - frequency) are defined by nature. We can target specific Δm^2 measurements by designing our experiments to have a certain L/E.

- Neutrinos in the Standard Model
- Reactor neutrinos and new anomalies
- PROSPECT: The Precision Reactor Oscillation and Spectrum Experiment
- Current efforts

Reactors: Tools for discovery

m station, the other two being on top of each other at e 40 m station. Because of the chemical reactivity of the

The PSD technique demands the optimization of the

SBU Seminar

Detecting Reactor Neutrinos

Inverse Beta Decay: v_ep→e⁺n

- 0.1%Gd-Loaded Organic liquid scintillator (GdLS) surrounded by photomultiplier tubes
- Neutrinos interact with free protons
- $E_v = T_{e+} + T_n + (m_n m_p) + m_e \approx T_{e+} + 1.8 MeV$
- Neutrino energy threshold of 1.8 MeV, producing signal of ~1MeV
- Capture resulting neutron as a tag of IBD interaction (typically Gd)
- Time-correlated signals, separated by $\sim 10s \, \mu s$

Precision Reactor Neutrino Physics

Kilometer baseline θ_{13} precision experiments: Daya Bay, Double Chooz, RENO

reactor properties

David E. Jaffe - BNL

10

Reactor neutrino production

Predicting Neutrino Flux/Spectra

Two main approaches:

- · Ab-initio
 - Calculate individual beta-decay spectra for 1000s of isotopes from database info
 - Sum according to cumulative yields
 - Problem: databases have huge uncertainties
- Beta-conversion
 - Measure cumulative beta spectra from fission parents
 - Use virtual beta-branches to convert into neutrino spectra
 - Problem: can virtual branches capture all relevant physics?

Predicting Neutrino Flux/Spectra

- Early 1980s: Measurement of ²³⁵U spectrum at Institut Laue–Langevin (ILL)
 - Agrees with ab-initio calculations
 - <5000 neutrinos detected, 20% uncertainties
- **Mid 1980s:** Beta-conversion measurements at ILL, reduce systematics improve uncertainties or predictions
- 1990s: Bugey PWR spectrum agrees with Beta-conversion spectra
- 1990-2000s: Measured fluxes agree with predictions

Recent Events: Problems emerge PRESPECT

- **2011:** Two beta-conversion reanalyses increase predicted flux
 - One pure conversion, one hybrid between ab-initio and conversion
 - $\sim 3\sigma$ tension with previous experiments
 - Change in Flux/Spectrum:
 - Conversion: +3%
 - Neutron lifetime: +1%
 - Non-equilibrium isotopes: +1%
- Could be bias from non-blind analyses?

Flux Deficit at Daya Bay

Blind analysis of absolute flux agrees with old prediction

Unlikely to be due to experimental bias

David E. Jaffe - BNL

16

Sterile Neutrinos??

Other Sterile Neutrino Hints PRESPECT

David E. Jaffe - BNL

18

20160418 - SBU Seminar

Impact on Future Experiments

eV-scale neutrinos would impact:

- Expected neutrino spectrum for Long-baseline oscillation searches
- Mass ordering for Double Beta Decay searches

Needs to be addressed soon

Gandhi, Kayser, Masud, Prakash arXiv:1508.06275

New Anomaly: Spectral Feature

- (Per All the Phile prompt energy (5-7MeV neutrino energy)
 - Predictions based on beta-conversion (Huber, Mueller, Haag)
 - Tracks with reactor power, observed in both Near and Far detectors
 - Cannot be explained by known detector effects

New Anomaly: Spectral Feature

Beta-converted spectra could be wrong:

- Use Allowed shapes for all decays, known to be incorrect
- Error in the measurements?
- Ab-initio calculation for one database seems to reproduce the feature
 - Problem: Large uncertainties and missing data
 - **Problem:** More complete database doesn't reproduce the shape
- Feature seems to track with ²³⁸U content, could point to one fission parent as the problem?

Anomalies lead to Discoveries

David E. Jaffe - BNL

The Precision Reactor Oscillation and Spectrum Experiment

Physics Goals:

• Search for short baseline v_e oscillations using detector segmentation

- Distortions in energy spectrum that vary with baseline
- Measure ²³⁵U antineutrino spectrum to illuminate the spectral anomaly

Experimental Strategy:

- Phase 1:
 - Sterile neutrino search, cover best fit region at 4σ in 1 year
 - World-leading ²³⁵U spectrum with 100k events/year
- Phase 2: World-leading short baseline sensitivity

Challenges:

- Minimal overburden, cosmogenic backgrounds
- Reactor-related backgrounds
 - High energy (≲10MeV) gammas

High Flux Isotope Reactor

- High Flux Isotope Reactor (HFIR) at Oak Ridge National Lab
- 85MW HEU (>94% of ve flux from ²³⁵U fission) compact-core reactor, 42% uptime
- PROSPECT activity for past 3 yrs
- Backgrounds well characterized
- Unique location for a short baseline experiment

Surface Neutrino Detection

Must be very close to research reactor

- Reactor-related backgrounds (gammas and thermal n)
- Detector will have to operate at the surface (or close to it)
- Cosmic-rays are problematic

Reactor Backgrounds

Targeted shielding effectively reduced gamma backgrounds

David E. Jaffe - BNL

Cosmogenic Backgrounds

- <10MeV neutrons are effectively shielded</p>
- >100MeV neutrons create showers of particles and many secondary neutrons
- IBD-like backgrounds stem mainly from fast neutron interactions

Surface Neutrino Detection

Three-pronged effort to address these backgrounds:

- 1. New detector design
- 2. New liquid scintillator
- 3. New shielding design

Segmented Antineutrino Detector

- 3ton lithium-loaded liquid scintillator (⁶LiLS) detector
- 120 optical segments
 - 15x15x119cm³, ~25 liters each

Seminar

Itiple particle s, reject showers

I PMT readout

libration sources y cell

14.6 cm

IBD Detection with ⁶LiLS

Pulse-shape Discrimination (PSD) Signatures

Inverse Beta Decay

γ-like prompt, n-like delay
Fast Neutron
n-like prompt, n-like delay

Accidental Gammas γ -like prompt, γ -like delay

Prompt signal: 1-10 MeV positron from inverse beta decay (IBD)

Delay signal: ~0.6 MeV signal from neutron capture on ⁶Li **with PSD signature**

Coincidence Signature of event: e-like prompt signal, followed by a ~50µs delayed neutron capture

Coincidence + PSD allows rejection of vast majority of backgrounds

⁶Li-loaded Liquid Scintillator

LiLS Requirements:

- High light yield (>6000ph/MeV) for energy resolution
- Excellent pulse-shape discrimination (PSD)
- Non-toxic, high flashpoint
- Stable and affordable

LiLS based on EJ-309 meets all requirements

- 8200ph/MeV, excellent PSD
- Safe to operate at a reactor

developed novel LiLS with excellent light yield, PSD, and neutron capture capabilities

David E. Jaffe - BNL

Novel Shielding Design

Representative 500MeV Neutron Primary

Optimize space, weight, and total background suppression

- Main problem is ~100MeV neutrons
 - create majority of IBD-like backgrounds (gamma-like prompt, neutron capture)
- Neutron spallation on high-Z shielding increases backgrounds
- Need neutron shielding inside lead shielding

Novel Shielding Design

Optimize space, weight, and total background suppression

- Main problem is ~100MeV neutrons
 - create majority of IBD-like backgrounds (gamma-like prompt, neutron capture)
- Neutron spallation on high-Z shielding increases backgrounds
- Need neutron shielding inside lead shielding

-μ[±]

e±

р 'n

BG Rejection via Detector Design PRESPECT

PROSPECT Signal and Background PRESPECT

- Signal (dashed) and background (solid) prompt spectra are shown through selection cuts
- S/B better than 1:1 is predicted.
- Rate and shape of the residual IBD-like background can be measured with high precision during reactor off periods.

Cuts	IBD signal
Expostire	Daily
PSD	1630
Time (1, 2, 3)	1570
Spatial (4, 5)	1440
Fiducial (6)	660

Cosmic BG
Daily
2.1e6
3.4e4
9900
250

Simulated event rates ($0.8 \le E \le 7.2$ MeV) after applying background rejection cuts

Short Baseline Oscillation Search PRESPECT

A Movable Detector

- AD-1 is designed to translate by 1m, almost half the detector length
- Improves the sensitivity from $<3\sigma$ to greater than 4σ
- Provides powerful systematics check

²³⁵U Spectrum Measurement

- ~700 inverse beta decays detected per day, 100k/year
- Best energy resolution of any reactor neutrino experiment (4.5%@1MeV)
- Phase-1 precision will surpass spectral model uncertainties
 - Directly test reactor neutrino models
 - Produce a benchmark spectrum for future reactor experiments

Phased Detector Development

40

Full-scale Test Detector

PROSPECT-20 at HFIR

- Operated for four months at HFIR
 - Two HFIR cycles
- Shielding package roughly 25% mass of full shield
- Reactor-related backgrounds mitigated
 - Targeted local shielding
 - Active background rejection with LiLS
- Validation of background simulations for full PROSPECT detector

PROSPECT-50 Demonstrator

David E. Jaffe - BNL

43

PROSPECT-50 Installation

Cf-252 Neutron Data

PROSPECT-50

Low-mass optical separators

Compatibility:

- extensive material compatibility testing required to ensure long-term LS performance
- focus on materials proven in recent experiments -PTFE, acrylic, polypropylene, ...
- long-term mechanical stability verified

Separators:

- physics goals demand low inactive mass, high reflectivity, and long-term compatibility
- developed multi-layer system meeting all requirements
- fabrication procedures for full-scale system under validation

produced robust low-mass separators from LS-compatible materials

Calibration Techniques

pulsed laser sources

- LiLS light transmission
- PMT gain, timing & linearity

encapsulated y sources

- energy scale
- scintillator non-linearity

neutron sources

- PSD calibration
- neutron detection efficiency

radioactive and cosmogenic backgrounds will be

used to monitor and calibrate detector response between source deployments

Example: PROSPECT-20

- through going muons
- ⁴⁰K
- n capture on ⁶Li

R&D on scintillator spiking with ²²⁷Ac (α , α coinc.) - segment uniformity, relative LiLS mass measurements

Summary and Outlook

- The reactor flux and shape anomalies need to be resolved: New physics or not?
- PROSPECT will be most sensitive and comprehensive short-baseline reactor experiment worldwide
- PROSPECT will make a 4σ test of the sterile neutrino best fit after one year
- PROSPECT will measure the ²³⁵U spectrum with the highest precision to-date
- Key design goals have been demonstrated and technical implementation is underway

Publications: arXiv: 1309.7647, 1506.03547, 1508.06575, 1512.02202 http://prospect.yale.edu

David E. Jaffe - BNL

50

20160418 - SBU Seminar

Pulse Shape Discrimination

Can take advantage of how different particles deposit energy in scintillator using pulse-shape discrimination (PSD). Gives particle identification information.

PROSPECT-2 (LiLS)

particle classification: light particles = "gamma-like", heavy charged = "neutron-like"

Baselines Probe Different Parameters **PR** SPECT

David E. Jaffe - BNL

ILL ²³⁵U Spectrum Measurement

Competition

- 1.<u>NEOS (Korea)</u>: Unsegmented 1000L GdLS at 2.8GW_{th} PWR, 25m baseline, 0.5 yr run started Aug2015
- 2.<u>Neutrino-4 (Russia)</u>: Movable, segmented 14m³ GdLS, 6-12m baseline at 100MW SM-3 reactor
- 3.<u>SOLID(EU)</u>: Segmented 2t PS/6LiFZnS, 5-10m baseline at 72MW BR2 reactor, starting 2nd half 2016
- 4.<u>STEREO(EU)</u>: Segmented, 1.7t GdLS, 9-11m baseline, at ILL 57MW reactor, has observed neutrinos but has high levels of reactor-related background, first data fall 2016
- 5.<u>CeSOX:</u> ~4PBq ¹⁴⁴Ce-¹⁴⁴Pr antineutrino source at Borexino, planning for fall 2016 deployment

Competing Efforts

- CeLAND and SOX: Radioactive source experiments: quick-ish
- IsoDAR: Accelerator-produced beta decay source: longer timescale

SBL Reactor Context

- PROSPECT: designed to provide a precision measurement for BOTH key physics goals
 - Moveable segmented detectors give best mapping of oscillation space
 - Design enables higher energy resolution other efforts
- PROSPECT has the experience, development, and infrastructure in place for the world's pre-eminent SBL reactor effort.

	<u>Effort</u>	Dopant	Good X-Res	Good E-Res	L Range (meters)	Fuel	Exposure, MW*ton	Move- able?	Running at intended reactor?
JS	PROSPECT	Li	Yes	Yes	6.5-20	HEU	185	Yes	Yes
	NuLat	Li/B	Yes	Yes	TBD	TBD	TBD	Yes	No
EU	Nucifer	Gd	No	Yes	7	HEU	56	No	Yes
	STEREO	Gd	Yes	Yes	9-11	HEU	100	No	Yes
	SoLid	Li	Yes	No	6-8	HEU	155	No	Yes
Russia	DANSS	Gd	Yes	No	9.7-12	LEU	2700	Yes	Yes
_	Neutrino4	Gd	Yes	No	6-12	HEU	150	Yes	Yes
Asia	NEO	Li/Gd	No	Yes	20-ish	LEU	30	No	No

A (biased) overview of global efforts — Good : Not Good