Towards a Precise Measurement of the 235U Spectrum with PROSPECT
Karsten M. Heeger, Yale University for the PROSPECT Collaboration

A Segmented Antineutrino Detector

PROSPECT measures $\bar{\nu}_e$ energy spectrum with energy resolution <5%/E in 154 segments at baselines 7-12m from HEU reactor (235U) at the High Flux Isotope Reactor (HFIR) at ORNL. ~640 inverse beta decays detected per day.

Understanding the Reactor Antineutrino Spectrum

Daya Bay and other reactor experiments measure anomalous spectrum ("bump") at PWR reactors compared to current models. \cite{DayaBay}

PROSPECT will make high-statistics measurement of HEU spectrum with excellent energy resolution and test reactor models. Understanding detector energy response is critical. \cite{Heeger2016}

Source Calibration of PROSPECT

Individual detector segments calibrated with radioactive and optical sources.

Performance of Detector Segment (P50 Prototype)

Calibration studies of PROSPECT prototype segment \cite{Heeger2018}

Observation of Reactor Antineutrinos at HFIR

First day of reactor antineutrinos at HFIR

First observation of antineutrinos from HFIR at >50 in ~4 hrs.

Radioactive source calibration, cosmogenics, and optical calibration used to characterize response of individual detector segments.

Excellent E resolution <5% at 1 MeV. S/B > 1.3 in first round of analysis.

Stay tuned for more data!

Acknowledgements: This material is based upon work supported by the U.S. Department of Energy Office of Science and the Heising-Simons Foundation. Addition support is provided by Illinois Institute of Technology, LLNL, NIST, ORNL, Temple University, and Yale University. We gratefully acknowledge the support and hospitality of the High Flux Isotope Reactor, managed by UT-Battelle for the U.S. Department of Energy.

karsten.heeger@yale.edu PROSPECT talk: Friday 12:15pm Neutrino 2018