PRESPECT

The PROSPECT Short Baseline Reactor Experiment

Nathaniel Bowden
For the PROSPECT collaboration

Crete '19

NITROGEN

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Motivation

Directly test the hypothesis of a new oscillation with $\Delta m^2 \sim 1 \text{ eV}^2$, i.e. oscillation length of few meters

Provide new tests of reactor models by making precision measurements of novel reactor spectra, esp. ²³⁵U fuel

Lawrence Livermore National Laboratory

Approach to Short Baseline Reactor Measurements

Search for relative shape distortion in identical detector segments at different baselines \rightarrow eliminate reactor model dependence

Research reactors generally preferable:

- Access to shortest baselines
- Often use ²³⁵U fuel \rightarrow static fissile inventory
- Compact core dimensions provide greatest sensitivity at $\Delta m^2 \sim 1 \text{ eV}^2$

But:

- Limited overburden cosmogenic neutrons from atmosphere dominant correlated background source
- Possibility of reactor generated accidental background

PROSPECT Experiment Overview

Physics Objectives

- 1. Model Independent search for short-baseline oscillation at distances <12m
- 2. Precision measurement of ^{235}U reactor $\overline{\nu}_{e}$ spectrum
- **Segmented detector** design using PSD capable ⁶Li-doped liquid scintillator (LiLS) provides powerful near-surface background rejection

Neutron capture on ⁶Li (nLi) provides:

- localized, distinct signal
- uniform efficiency in compact detector

Experimental site: High Flux Isotope Reactor @ORNL

Compact Reactor Core

Power: 85 MW ²³⁵U Fission Frac.: >99% Size: h=51cm d=44cm Duty-cycle: 46%

User facility with 24/7 access; Exterior access at grade

PROSPECT Detector Design

- 154 segments, 119cm x 15cm x 15cm
 - ~25liters of LiLS per segment, total mass: 4ton
- Thin (1.5mm) reflector panels held in place by 3D-printed support rods

Segmentation enables:

- Calibration access throughout volume
- Position reconstruction (X,Y)
- Event topology ID
- Fiducialization
- Double ended PMT readout for full (X,Y,Z) position reconstruction
- Optimized shielding to reduce reactor and cosmogenic backgrounds

Comprehensive R&D Program

- Conceptual design for physics and background requirements
- Reactor site assessment

- Develop detector design and analysis that achieves required S:B
- Demonstrate required segment and LiLS performance

 Full scale detector meets all performance requirements

 Characterize reactor & cosmogenic background

HPK

(n,H)

0.5

1.0

 Validate shielding & detector MC with onsite prototypes

Demonstrate required performance with production components

PROSPECT Whitepaper arXiv:1309.7647 **Reactor Background** NIMA A806 (2016) 401 arXiv:1506.03547 Long Segment Energy & PSD JINST 10 P11004 (2015) arXiv:1508.06575 **Physics Program** J. Phys. G, 43 113001 arXiv:1512.02202 **Production Prototype** JINST 13 P06023 (2018) arXiv:1805.09245 **PROSPECT Experiment** NIMA 922 (2019) 286 arXiv:1808.00097 **LiLS Production** JINST 14 P03026 (2019) arXiv:1901.05569 **Optical Grid** JINST 14 P04014 (2019) arXiv:1902.06430

PR©SPEC

Event Detection in PROSPECT AD

Event Identification

Background reduction through detector design & fiducialization

Prompt signal: 1-10 MeV positron from inverse beta decay (IBD)

Delay signal: ~0.5 MeV signal from neutron capture on 6Li

40µs delayed n capture

inverse beta decay (IBD) γ-like prompt, n-like delay

fast neutron background

recoil-like prompt, capture-like delay capture-like prompt, capture-like delay

accidental gamma background y-like prompt, y-like delay

Background reduction is key challenge

Active Background Suppression

- Detector design features provide background rejection via
 - Efficient recoil & neutron capture identification
 - Multi-interaction & multi-particle identification
 - Fiducialization
- Signal:Background > 1:1 predicted using prototype validated MC; > 10⁴ background rejection

PSD & ⁶Li

Position Reconstruction

NOVEMBER 1, 2017

NOVEMBER 17, 2017 FINAL ROW INSTALLATION

DEC, 2017 - JAN 2018 DRY COMMISSIONING AT YALE

DE I

-

I I E E

Energy Reconstruction

- Sources deployed throughout detector, measure single segment response
- Proton PSD tagged ¹²B production High-energy beta spectrum calibration
- Full-detector Erec within 1% of Etrue

¹³⁷Cs

0.5

High light collection: 795±15 PE/MeV

1.5

8

10

Phys.Rev.Lett. 121 (2018) 251802

6

Arb. Unit

0.02

0.8

0.6

0.4

0.2

Rate [mHz/MeV]

Energy Stability and Uniformity

Calibration Source Deployment:

- 35 calibration source tubes throughout detector to map energy response
- Segment to segment uniformity ~1%
- 252Cf source to study neutron capture efficiency
- Intrinsic radioactive sources
 - Track uniformity over time with distributed internal single-segment sources:
 - Alpha lines from ${}^{212}\text{Bi} \rightarrow {}^{212}\text{Po} \rightarrow {}^{208}\text{Pb}$ decays, nLi capture peak
 - Reconstructed energy stability over time < 1%

Pulse Shape Discrimination Performance

- Excellent particle ID of gamma interactions, neutron captures, and nuclear recoils
- Dominant backgrounds: Cosmogenic fast neutrons, reactor-related gamma rays, reactor thermal neutrons
 - Vast majority identified and rejected by PSD for Prompt and Delayed signals
- Tag IBDs with high efficiency and high purity

First 24hr of Detector Operation

- March 5, 2018: Fully assembled detector began operation
- Reactor On: 1254±30 correlated events between [.8, 7.2MeV]
- Reactor Off: 614±20 correlated events (first off day March 16)
 - Distinct peaks in background from neutron interactions with H and ¹²C
- Time to 5*σ* reactor antineutrino detection at earth's surface: < 2hrs

First Analysis Data Set - arXiv:1806.02784

- 33 days of Reactor On
- 28 days of Reactor Off
- Correlated S:B = 1.36
- Accidental S:B = 2.25
- 24,608 IBD interactions
- Average of ~750 IBDs/day
- IBD event selection defined and froz on 3 days of data

Best Signal-to-Background achieved On-Surface (< 1 mwe overburden)

IBD Rate vs Baseline

- Observation of 1/r² behaviour within the detector itself
- Cover a wide relative baseline range, even in one detector position

IBD Spectrum vs Baseline

- Compare spectra from 6 baselines to measured full-detector spectrum
- Null-oscillation would yield a flat ratio for all baselines

Direct ratio search for oscillations, independent of reactor models

22

PROSPECT

Oscillation Search Results

- Build a χ² by comparing measured spectra to predicted spectra at each baseline
- Covariance matrices capture all uncertainties and energy/baseline correlations
- Feldman-Cousins based confidence intervals for oscillation search
- Critical χ² map generated from toy MC using full signal and background covariance matrices
- 95% exclusion curve based on 33 days Reactor On operation

Direct test of the Reactor Antineutrino Anomaly

Disfavors RAA best-fit point at >95% (2.3 σ)

Measurement of ²³⁵U Spectrum

Measured spectrum with good S/B at surface 1.7/1 (0.8-7.2 MeV)

~ 6x greater statistics than ILL (1981)

- 40.2 days of reactor-on exposure
- 37.8 days of reactor-off exposure
- ~ 31,000 IBD candidate events (reactor-off candidate events scaled to match exposure)

Measurement of ²³⁵U Spectrum

Reconstruction & Background Subtraction Cross Checks

Compare:

- Different reactor on/off periods, accounting for variation of cosmogenic background
- Different detector halves & quadrants
- Inner and outer detector volumes

Consistency is found for many selection variations, testing energy reconstruction and background subtraction across segmented PROSPECT detector

PROSPECT 25

Interpretation of Prompt Energy Spectrum

Is PROSPECT consistent with Huber ²³⁵U model for HFIR HEU reactor?

- χ^2 /ndf = 52.1/31, p-value = 0.01
- Huber model broadly agrees with spectrum but exhibits large χ²/ndf with respect to measured spectrum, not a good fit.
- Deviations mostly in two energy regions.

Current PROSPECT measurement is statistics limited

Interpretation of Prompt Energy Spectrum

How does **PROSPECT** compare to

Shape of measured ²³⁵U spectrum is consistent with deviation relative to prediction observed at LEU reactors

28

PROSPECT

Conclusion

- PROSPECT started data collection in early March 2018
- Observed antineutrinos from HFIR on the surface with good signal/background
- Background rejection and energy resolution meet expectations based on comprehensive PROSPECT R&D program
- The PROSPECT Detector provides:
 - opportunity for detailed study of cosmogenic backgrounds
 - important capability demonstration for reactor safeguards applications
- First oscillation analysis using 33 days of reactor-on data disfavors the RAA best-fit at 2.3 σ
- Performed a modern high-statistics ²³⁵U spectrum measurement using a surface-based detector; currently statistics limited
- More data has been collected and analysis is ongoing

Time dependence of Cosmogenic backgrounds

- Correlation between cosmogenic backgrounds and atmospheric pressure
- Measure correlation during reactor off time, and use it to correct background subtraction during reactor on

Relative Segment Volume Measurement

- Relative mass important for oscillation search
- Survey during assembly: < 1% variation

- ²²⁷Ac added to LS prior to filling
- Double alpha decay (²¹⁹Rn→²¹⁵Po→²¹¹Pb), highly localized, 1.78ms half-life, efficient selection straightforward,
- Measured absolute z-position resolution of < 5cm
- Direct measurement of relative target mass in each segment

Uniformity in rates within segment

Uniformity in rates between segments

Signal to Background Prediction

Prototype systems provide benchmarking of AD Monte Carlo

Background rejection via:

- Efficient PSD & neutron identification
- Multi-interaction & multi-particle identification
- Fiducialization

S/B better than 1:1 is predicted for PROSPECT AD. Rate and shape of residual IBD-like background can be measured during numerous reactor off periods.

