

PROSPECT

A Precision Oscillation and Spectrum Experiment

Motivations

Primary:

Understand reactor antineutrino emissions and resolve reactor anomaly

First precision measurement of ²³⁵U reactor antineutrino spectrum

 additional constraint on flux models underlying reactor anomaly and newly observed spectral deviation

Short Baseline Oscillation search:

 short-baseline oscillation search to test hypothesis of sterile neutrinos and probe new physics

Additional:

Reactor Safeguards

- develop detection technology for operation near-surface
- monitoring demonstration at small research facility

Prompt energy [MeV]

PROSPECT Experimental Concept

Deploy two segmented liquid scintillator detectors at compact HEU research reactor

Phased Approach

Phase 1: Near detector *O*(2ton), 3 years, HFIR selected as site for Phase I

- Precision spectrum measurement
- Movable detector for oscillation search at multiple baselines
- **Phase 2:** Near+Far detector *O*(10ton), 3 years

Unique Features

- ⁶Li doped liquid scintillator in segmented detector
- Pulse Shape Discrimination: identify e.m./fast neutron/ neutron capture
- excellent energy resolution
- low inactive volume
- near detector movable to 1.2m longer baseline

Phased PROSPECT R&D at HFIR

PROSPECT 0.1 Aug. 2014

5cm 0.1 liter LS cell

PROSPECT 2
Dec. '14/Jan. '15

12.5cm 2 liter LS cell

PROSPECT 20 Early 2015

1m 20 liter LS cell

PROSPECT N×20
Summer 2015*

N×20 liter LS segments

* Technically driven schedule

PROSPECT 2ton
Summer 2016*

PROSPECT Physics Potential: 235U Spectrum

Precision ²³⁵U spectrum measurement:

- complements existing LEU measurements, additional constraint on flux predictions from single well modeled core
- aids in understanding observed spectral discrepancies and may explain the underlying cause for the "reactor anomaly"
- useful for future reactor neutrino experiments such as JUNO and RENO-50, and reactor monitoring applications

Assumptions:

- 1:1 Signal:Background
- absolute detector energy scale systematics comparable to Daya Bay
- negligible uncertainty on the spectral shape of dominant backgrounds (reactor off measurement)
- negligible uncertainty due to temporal variations of background

PROSPECT Physics Potential: Oscillation

Strategy Relative spectrum measurement over broad baseline span

PROSPECT N×20 Two position measurement can probe best fit region very soon (N≥16)

PROSPECT Phase I Two position measurement spans broad L/E range to rapidly provide significant physics reach

PROSPECT Phase II Extended L/E range, increasing sensitivity and accessing lower Δm^2

Assumptions

- No reliance on absolute shape/normalization
- 1:1 Signal:Background
- Detection Eff.: 30%
- 14.6cm position res.
- 4.5% energy res.
- 1% segment-to-segment normalization precision
- 0.5% bin-to-bin uncertainty (e.g. energy scale)

PROSPECT Phase I Detector Concept

Provides large target mass and baseline span within HFIR facility constraints

Background reduction:

- Particle ID from ⁶Li-LS with PSD
- Event localization from segmentation
- Neutron & γ-ray suppression from multi-layer shield

Positron energy containment/reconstruction:

- Fiducialization from segmentation
- Well understood, uniform optical response from double-ended readout

2.5 ton target, 10x14 segment array

Segment Unit Cell

- < 3% inactive material (Bugey3 >15%)
- Use low-mass optical separators; support posts provide calibration access

R&D Activities: Detector Development

⁶Li loaded liquid scintillator

Several candidates developed with good scintillation light yield, capture timing, PSD, compatibility

Low mass optical separators

Materials identified and fabrication methods developed

⁶Li-LS testing

Discrimination of γ -rays, fast and thermal neutrons

1m long PROSPECT20 cell

Excellent optical uniformity and PSD performance

R&D Activities: Prototype Deployments at HFIR

Validate technology & background understanding; exercise HFIR work process

PROSPECT 2 Operating since Dec. '14

- 2 liter Li-LS detector, compact multilayer shield
- not representative of final shield design but useful for MC validation

Singles rate dominated by material radioactivity Good control of reactor correlated background

IBD-like pair time separation

IBD-like prompt energy

Cosmogenic background processes understood; data and simulation in good absolute agreement

Conclusion

- PROSPECT is a phased approach to understand antineutrino emission from reactors and to resolve the reactor neutrino anomaly
- PROSPECT is pursuing development of antineutrino detectors for use at near-surface research reactors, including ⁶Li PSD capable liquid
- PROSPECT has characterized backgrounds at HFIR and other US reactor sites, operated prototype detectors at HFIR, and established a working relationship on-site with HFIR and the Physics Division at ONRL
- Data from PROSPECT2 show good agreement between IBD-like events and simulations and indicate that 1:1 signal-to-background is achievable
- PROSPECT is an experienced collaboration with expertise in design, construction, operation, and analysis of reactor experiments. Past projects include KamLAND, Daya Bay, Double Chooz, and non-proliferation efforts
- PROSPECT is ready to scale up and proceed with the design and construction of a 2ton, Phase I detector
- Exploring collaboration with SoLid group to fully leverage potential of technologies and resources

PROSPECT Collaboration

10 universities
6 national laboratories

Updated whitepaper

arXiv:1309.7647

Website

http://prospect.yale.edu/

Brookhaven National Laboratory

Drexel University

Idaho National Laboratory

Illinois Institute of Technology

Lawrence Berkeley National Laboratory

Lawrence Livermore National Laboratory

Le Moyne College

National Institute of Standards and Technology

Oak Ridge National Laboratory

Temple University

University of Tennessee

Virginia Tech University

University of Waterloo

University of Wisconsin

College of William and Mary

Yale University

R&D Activities: Site Characterization & Selection

Detailed assessment of 3 U.S. research reactors:

ATR, HFIR, NIST (see later talks)

Advantages

- Compact ²³⁵U core
- Frequent outages for background measurement
- Multiple accessible baselines
- Detailed public core models

Logistics & Engineering

- Received excellent and enthusiastic host support
- Identified and examined detector locations in detail: floor loading, space and access constraints, certification, installation procedures

PROSPECT viable at all Sites

HFIR selected for PROSPECT Phase I

85 MW_{th} @ 41% annual duty cycle

Core Fission Profile

Background Measurement (paper in preparation)

- Extensive surveys at all sites
- Identified background production/transport mechanisms & spatial distributions to inform shielding design

PROSPECT 20 1 meter ⁶Li-LS single cell Demonstrate full-scale segment performance

Future PROSPECT R&D

PROSPECT N×20 1 meter ⁶Li-LS N cells Demonstrate topology, fiducialization & energy resolution in multiple segment array

PROSPECT 2ton 1 meter ⁶Li-LS 140 cells Phase I physics

