PROSPECT at the High Flux Isotope Reactor (HFIR)

Chris Bryan Oak Ridge National Laboratory

WINP 2015 Brookhaven National Laboratory

Feb 5th, 2015

OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

HFIR conceived as multi-purpose reactor with a focus on transplutonium isotope production.

1958

U.S. Atomic Energy Commission (AEC) decides to design HFIR

1965 HFIR Goes Critical

1966

HFIR Operates at full power of 100^MW

1986

Reactor Vessel embrittlement appeared worse than anticipated. thus began a $2\frac{1}{2}$ year shutdown to investigate improvement options

1989

HFIR is restarted at 85MW, extending the vessel life to 2040

2007 HFIR is restarted

after a shutdown for installation of a Cold Source and many system upgrades.

Today

HFIR currently operates at 85MW with a primary mission of neutron scattering research.

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

HFIR technical description

- Annular HEU core (9.5kg@93%)
- 85MW operation +/- 1MW
- 23-26 day cycle, depending on core loading
- 6 cycles/year. Plans for 7
- Next long planned outage (>4mo) estimated in 2023/24.
- Accustomed to arranging a variety of science programs and hosting access for visitors, including FN.
- Primary missions are
 - 1. neutron scattering (user facility)
 - 2. isotope production
 - 3. materials damage testing
 - 4. nuclear forensics

Advantages of a research reactor (HFIR)

- Compact core with highest power density (peak ~2MW/liter)
- Regular and relatively short on/off cycle (predictable)
- Accustomed to accommodating researchers from around the world (including FN access to facilities)

BY UT-BATTELLE FOR THE U.S. DEPARTMENT

How the nuclear reaction is controlled affects the flux available for irradiations

HFIR Reactor Bay & Pressure Vessel

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Reactor Building Layout

Ν

National Laboratory

7 Managed by UT-Battelle for the Department of Energy

Near Detector Location

- 6-9m Baseline Range
- Intrinsic shielding includes
 - Pool and vessel water (3m)
 - Pool walls (1m concrete)
 - Bioshield (1.3m) under detector
- Overburden includes two 8" concrete floors directly above detector
- Nearby activities include
 - Materials Irradiation Facility (gas mixing and control station)
 - NAA lab (around corner)
 - Cold Source control room (through double doors at end of hall)

Detector location relative to HFIR core

М-11526-ОН-018А Е КЕУ. О

Panoramas of detector area

Advantages of ORNL/HFIR

- 1. Ease of access (physically and administratively).
- 2. Facilitation by ORNL-internal collaborations (Physics Division, Research Reactors Division).
- 3. Existing User Facility (neutron scattering), so processes and procedures exist for adding these experiments with existing Engineering, Safety, Operations, Craft and Radiological Controls staff.
- 4. Adequate space for fundamental science experiments. Currently hosting several physics experiments, but room for others. (PROSPECT, SoLiD, etc...)
- 5. Backgrounds are characterized (as are those at NIST and ATR).
- 6. HFIR MCNP model is mature and available (posted on website).
- 7. Reliable HFIR operating model. 6-7 cycles per year. Schedule is prepared 3 years in advance. Reliability of startups at HFIR is over 95%.
- 8. ORNL has been involved with PROSPECT since the inception of the collaboration.

