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PROSPECT TALKS AT DNP
▸ Latest Sterile Neutrino Analysis (E.G. 00001 J. Pallomino Gallo) 

▸ Joint Analysis Prospects (E.G. 00003 J. Gaison) 

▸ Future Analysis Improvements (E.G. 00004 X. Zhang/M. Mendenhall) 

▸ Detector Upgrade (E.G. 00005 P. Mumm) 

▸ Machine Learning Applications (E.G. 00007 A. Delgado) 

▸ HFIR Background Characterization (E.G. 00009 B. Heffron, C. Gilbert, A. Galindo-
Uribarri) 

▸ Machine Learning Tagging of Ortho-Positronium (L.K. 00006 B. Heffron) 

▸ Machine Learning for Event Reconstruction (S.N. 00002 X. Lu)
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http://meetings.aps.org/Meeting/DNP20/Session/EG.1
http://meetings.aps.org/Meeting/DNP20/Session/EG.3
http://meetings.aps.org/Meeting/DNP20/Session/EG.4
http://meetings.aps.org/Meeting/DNP20/Session/EG.5
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BEN FOUST, YALE UNIVERSITY                                         DNP 2020                          

NEUTRINO SPECTRUM MEASUREMENTS FROM POWER REACTORS
▸ Spectrum models don’t match experimental data in low enriched uranium (LEU) power reactors 

▸ Neutrino events come from a mixture of fissile isotopes: 235U, 238U, 239Pu, 241Pu 

▸ ‘Bump’ in 4-6 MeV (prompt energy) range 

▸ Poor fit overall to leading reactor models (Huber/Mueller).  

▸ Need new reactor data to clarify source of deviations
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HFIR: A UNIQUE EXPERIMENTAL SITE
▸ 85 MW reactor core 

▸ Highly Enriched Uranium (HEU) 
fuel (235U) 

▸ 46% duty-cycle, 7 cycles/yr, 24 
day reactor-on periods 

▸ >99% of ve flux from 235U fission 

▸ Challenges: 

▸ Minimal overburden (<1 mwe) 

▸ high gamma background 

▸ limited space for shielding
�4

High Flux Isotope Reactor, ORNL



BEN FOUST, YALE UNIVERSITY                                         DNP 2020                          

DETECTOR DESIGN

▸ Segmented detector with 154 optically 
separated segments 

▸ Segmented design allows for: 

▸ Calibration access 

▸ Fiducialization 

▸ Position reconstruction in three 
dimensions 

▸ Event topology and particle ID
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Background events provide a myriad of ways to measure segments 

performance – observed segment-to-segment  variation is small

The PROSPECT antineutrino detector (AD) in now 

operating 7-9m from a research reactor core: 

• The recently commissioned PROSPECT AD is performing very well

• Detector design features provide multiple observables to calibrate and track system 

stability and uniformity 

In addition to calibration sources, AD data can be used to 

measure system stability, validating our calibration procedures 

• 4 ton 6Li-loaded liquid scintillator ( 6LiLS) target 

• Low mass optical separators provide 154 optical 

segments, 117.5x14.6x14.6cm 3

• Double-ended PMT readout

• Internal calibration access along full segment length

Prospect has begun to study the characteristics of IBD signal and 

cosmogenic background events

• Energy resolution, position resolution and detection efficiency meet expectations

• Antineutrinos have been detected in the high background environment close to a 

research reactor core and on the Earth’s surface
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The AD light yield & PSD performance are very good (poster 146), as is 

axial position resolution. Other performance parameters are assessed via a 

combination of measurements and simulation.

Antineutrino detection efficiency

Antineutrino selection cuts preferentially 

reject cosmogenic backgrounds. Some 

PMTs have exhibited anomalous current 

behavior, with these segments being 

excluded from analysis for now. 

Simulation is used to understand the 

effect of these factors on IBD detection 

efficiency across the detector.

6Li neutron capture gives fixed 

energy events distributed 

throughout entire AD – track 

system response in time and 

measure variation along segments

Optical collection along 

segment length

Axial variation in single PMT 

light collection is almost 

exponential and has minor 

variation amongst PMTs 

Relative energy scale 

between segments

Tracking  6Li neutron capture 

feature in time demonstrates  

effectiveness of  running 

calibration and segment-to-

segment uniformity 

Timing Calibration

Muon tracks traversing 

multiple segments provide 

coincident events to extract 

segment-to-segment and 

PMT-to-PMT timing 

information

Axial position 

reconstruction

BiPo events provide a 

uniformly distributed event 

sample with which to validate 

axial position reconstruction

Time stability of energy 

reconstruction

Tracking  reconstructed energy 

of BiPo events distributed 

uniformly throughout the 

detector independently 

validates energy calibration

Time stability of neutron capture efficiency

The LiLS contains three species with non-negligible capture 

cross sections: 6Li, 1H, and 35Cl. Tracking  relative capture 

fractions demonstrates stable efficiency of the 6Li capture 

reaction used for antineutrino detection

Time variation of 

cosmogenic backgrounds

Several cosmogenic background 

event classes are observed to 

vary with the depth of the 

atmospheric column. This ~1% 

effect is corrected for in 

background subtraction 

Axial Position Resolution

212Po decays produce b-a

correlated events in the 

same location - provide 

direct measure of AD 

position resolution
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The PROSPECT AD has successfully detected antineutrinos in the high 

background environment close to a reactor core and on the Earth’s surface
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IBD SELECTION

▸ Clear, correlated signal signature 

▸ Particle ID with pulse-shape 
discrimination 

▸ Detector optimized for background 
suppression with shower veto, event 
topology, and fiducialization
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Figure 3: Segment positions of cosmic background IBD-like prompt events, after topology
cuts and cell-end fiducialization.
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(a) New AD1 baseline simulation.
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(b) Updated simulation.

Figure 4: P2k total cosmic contributions to IBD-like background (with cuts sequence from pro-
posal).
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(b) Updated simulation.

Figure 5: P2k signal to background projection after cuts.
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(b) Previously shown in PROSPECT physics paper for

12 ⇥ 10 baseline.

Figure 4: IBD signal versus IBD-like cosmic background, after all cuts. Previously publicised
figure shown for comparison.
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DETECTOR PIC
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DETECTOR PERFORMANCE

▸ Energy resolution of <5% at 1 MeV 

▸ MC successfully tuned to agree with 
calibration data 

▸ Reject candidates from 36 fiducial segments 
experiencing PMT current instabilities

�8

X
X
X
X
X

X

X
X
X

X
X

X

X

X

X

X
X
X

X
X
X

X
X
X
X
X

X
X

X

X

X
X
X

X
X

X

X

X
X
X

X
X

X
X
X

X
X
X

X
X
X

X X
X
X

X
X
X
X
X
X
X
X
X

1
2
3
4
5
6
7
8
9
10
11

Z 
se

gm
en

t

1 2 3 4 5 6 7 8 9 10 11 12 13 14
X segment

Excluded Non-FiducialX



BEN FOUST, YALE UNIVERSITY                                         DNP 2020                          

DETECTOR MODELING
▸ Full-detector IBD prompt energy response modeled by calibration-tuned Geant4 MC 

▸ Energy leakage into dead mass/non-fiducial segments cause substantial off-diagonal 
contribution 

▸ Allows accurate comparison of hypotheses in true energy to the prompt space of the 
experiment (Reconstructed Visible Energy)
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SPECTRUM MEASUREMENT

▸ 95.65 calendar days 
reactor-on, 73.09 reactor-
off 

▸ 50560 �  406 IBD signal 
events 

▸ S:B of 1.4:1 in signal 
energy range (0.8-7.2 
MeV)

±
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SPECTRAL INTERPRETATION

▸ We apply the PROSPECT response 
matrix to the Huber model to make 
a comparison in prompt space 

▸ Find that the Huber model is in 
reasonable agreement with our 
data 

▸ X2/ndf = 30.8/31, p-value = 0.48 

▸ Still statistics limited
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SEARCH FOR   -LIKE EXCESSθ13

▸ Fit a gaussian with fixed mean and 
width to Daya Bay’s excess in true 
energy 

▸ Apply PROSPECT response and fit 
for amplitude in prompt space 

▸ If � U has no contribution to Daya 
Bay’s findings, expect no bump 

▸ If � U is entirely responsible for Daya 
Bay’s findings, expect a very large 
bump

235

235
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BEST FIT EXCESS
▸ Best fit bump size relative to 

Daya Bay: 84%±39%  

▸ Allowing a Daya Bay-like excess 
to be added to the Huber model 
improves the fit with �  of 4.84 
(� ndf =1) 

▸ Disfavor both 0% size ‘No-Bump’ 
and 178% size ’Big � U Bump’ 
cases at >2𝝈
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CLOSING STATEMENTS
▸ PROSPECT is a surface detector with minimal overburden, and has made an accurate 

measure of the � U spectrum and demonstrated new technology 

▸ Have measured >50,000 IBD events from � U at the HFIR research reactor 

▸ Achieve S:B of 1.4:1 in signal range 

▸ Find the Huber model to be in reasonable agreement with data 

▸ Adding deviation similar to what is seen in �  experiments improves agreement 
significantly enough to disfavor no-bump case 

▸ Still statistics limited 

▸ Joint efforts with other reactor experiments under way to improve sensitivity and allow 
further interpretation of spectrum
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