PROSPECT (Precision Reactor Oscillation and Spectrum Experiment)

Pieter Mumm

National Institute of Standards and Technology

For the PROSPECT Collaboration

Thanks to PROSPECT collaboration for many slides

parent dependent spectrum time-dependent rate and spectrum ×10¹⁸ 235U # of fissions HEU 120 238U 238 100 239Pu 10 ²³⁹Pu 241Pu 80 10 ^{24†}Pu 60 LEU 10 40 10 20 00 10 200 500 3 8 9 10 0 1 2 4 5 6 100 300 400 Time (days) Energy (MeV)

Source: fissions in ²³⁵U,²³⁸U, ²³⁹Pu, ²⁴¹Pu 'pure'

Spectrum varies between reactor types, and can be time dependent

cross-section accurate to +/-0.2%

threshold: neutrinos with E < 1.8 MeV are not detected

only ~ 1.5 $v_{\rm e}/{\rm fission}$ are detected

Rate and spectrum 'anomalies'

2011 dual v_e flux predictions:

- re-analysis of 19 short-baseline expts.
- new antineutrino spectra: +3%
- neutron lifetime correction: +1%
- off-equilibrium effects: +1%

Flux deficits observed elsewhere

Sterile Neutrino:

- High frequency oscillation
- Mass splitting ~1eV²
- Baseline ~few meters

All θ_{13} experiments observe a similar spectral excess of ~10% between 5-7 MeV

Both motivate additional experiments:

- other reactor/fuel types
- excellent energy resolution
- short baseline

Daya Bay Fuel Evolution Analysis Daya Bay, arXiv:1704.01082v1

Daya Bay recently reported IBD yields of ²³⁵U and ²³⁹Pu using evolution of LEU reactors. Reactor flux model found to be incorrect for ²³⁵U.

Analysis of Daya Bay with Fuel Burnup

Hayes et al, arXiv:1707.07728

 $\sigma_{f,235}$ [10⁻⁴³ cm² / fission]

IBD yields calculated from reactor rates (of 26 reactor experiments) in tension with Daya Bay measurement.

Composite models: arXiv:1708.01133

"not enough information to use the antineutrino flux changes to rule out the possible existence of sterile neutrinos"

Precision Reactor Oscillation and Spectrum Experiment

Physics Objectives:

- Search for short-baseline antineutrino oscillation at distances ~10 m
- Precision measurement of ^{235}U reactor \overline{v}_{e} spectrum

PROSPECT whitepaper, arXiv:1309.7647

PROSPECT Physics Program, J. Phys. G, 43 113001; arXiv:1512.02202

"Point Source" vs Extended Core

HFIR research reactor

- Compact core (~1m) and 85 MW, HEU (~93% ²³⁵U) Fuel
- Reactor off periods ~ 60% (key for background characterization)
- Backgrounds well characterized
- Detailed MCNP core model available
- Onsite PROSPECT activity last 4 years.

Experimental Parameters for a Reactor Antineutrino Experiment at Very Short Baselines K.M. Heeger, B.R. Littlejohn, H.P. Mumm, M.N. Tobin., Phys.Rev. D87 (2013) 073008

PROSPECT Antineutrino detector

IBD detection with ⁶Li Liquid Scintillator

Fiducialization, PSD, and topology

No single cut isolates IBD events, yet sequence of cuts leveraging spatial and timing characteristics of an IBD *yields > 3 orders of magnitude background suppression and an expected signal to background of > 3:1.*

Series of cuts:

- PSD
- Timing
- Spatial topology
- Fiducialization

Rate and shape of residual IBD-like background can be measured during multiple interlaced reactor-off periods.

Phased detector development

Prototyping: PROSPECT-50 currently operating

Short Baseline Oscillation Search

²³⁵U Spectrum Measurement

Only existing HEU measurement is from ILL in 1981 (5k events total)

- Best energy resolution of any reactor neutrino experiment (4.5%@1MeV)
- Precision will surpass spectral model uncertainties
 - Directly test reactor neutrino models
 - Produce a benchmark spectrum for future reactor experiments

Assembly progress

Pieter Mumm

Assembly progress

The reactor flux and spectrum shape anomalies remain unresolved after new TAS data and recent θ_{13} experiments

Many complementary experiments online or coming online soon. Precision data in the next couple of years. PROSPECT will be most sensitive and comprehensive short-baseline reactor experiment within this group.

PROSPECT specifically will:

Measure the ²³⁵U spectrum with the highest precision to date; complementary to LEU experiments

Perform a model-independent sterile oscillation search, covering the current best fit at > 4σ within three years.

All performance metrics have been demonstrated, nearing completion of detector assembly, early data in 2018.

http://prospect.yale.edu

4 national laboratories 10 universities 68 collaborators

Publications: arXiv:1309.7647, NIM A806 (2016) 401, JINST 10 (2015) P11004, Journal of Phys. G 43 (2016) 11 Supported by:

Backup

PROSPECT design

Folded reflectors improve light collection

Corner Rod mass reflector system developed

Lithium-6 Loaded Liquid Scintillator

⁶Li loading via Reverse Micelles:

- Surfactants added to base liquid scintillator
- Dynamically stable
- relatively high loading possible > 0.1%
- tolerable reduction in light yield
- tolerable reduction of PSD performance

Aqueous phase: 10 M enriched (95%) LiCl

- enriched Li₂CO₃ disolved in HCI
- $\cdot\,$ Purified via anion exchange resin

Safe, affordable:

Several non-toxic, non-flammable formulations based on EJ-309, LAB, Ultima Gold tested

EJ-309 selected as baseline Diisopropylnaphthalene (DIPN) base Non-ionic surfactant

Pure samples of LS have stable performance over year timescales

Extensive material compatibility program; production materials validated

PROSPECT-20: *in situ* validation of background models

Studies of Pulse Shape Discrimination (PSD) and topology suggest excellent signal to background and lessons for other detectors

Spatial topology:

- prompt and delayed signals proximate;
- multiple cell hits in the prompt signal must be compact (e.g. rejecting extended minimum ionizing tracks)
- events occurring outside the inner fiducial volume are vetoed (partial energy deposition reduces BG rejection).

Timing:

- delayed capture must occur within 100 μ s of the prompt ionization (set by ~40 μ s neutron capture time)
- multiple hits in the prompt cluster must occur within 5 ns (reject slower-moving neutron recoil events)
- events must be isolated from other neutron recoils or captures in a $\pm 250 \ \mu$ s window, (reject multi-neutron spallation showers)

No single cut isolates IBD events, yet sequence of cuts leveraging spatial and timing characteristics of an IBD *yields > 3 orders of magnitude background suppression and an expected signal to background of > 1:1.*

Rate and shape of residual IBD-like background can be measured during multiple interlaced reactor-off periods.

Background Characterization

- Minimal overburden: cosmogenic backgrounds
- Close proximity to reactor and other systems
- Background control challenging

Gamma, Thermal and Fast Neutron, Muons

Extensive measurement campaigns (ongoing):

- Characterize background fields at HFIR
- Emphasized importance of localized shielding of penetrations, pipes, etc

Hots spots from beam penetrations to core

Nucl. Instrum. Meth. A806 (2016) 401–419, arXiv:1506.03547, PROSPECT Collaboration

PROSPECT-20: validation performance

Calibration system

NLE

Rate anomaly

2011 dual v_e flux predictions:

- re-analysis of 19 short-baseline expts.
- new antineutrino spectra: +3%
- neutron lifetime correction: +1%
- off-equilibrium effects: +1%

Error budget dominated by flux prediction

If not a bias effect, what is it?

- Problem with prediction?
- Detector effect that isn't understood?
- New physics?

Sterile Neutrino:

- High frequency oscillation
- Mass splitting ~1eV²
- Baseline ~few meters

Unexpected 'bump' in power reactor (LEU) spectrum

Considerable international interest:

Diverse techniques (background suppression, detection technology, location) Overlapping sensitivities

Experiment	Reactor Power/Fuel	Overburden (mwe)	Detection Material	Segmentation	Optical Readout	Particle ID Capability
DANSS (Russia)	3000 MW	~50	Inhomogeneous PS & Gd sheets	2D, ~5mm	WLS fibers.	Topology only
NEOS (South Korea)	2800 MW LEU fuel	~20	Homogeneous Gd-doped LS	none	Direct double ended PMT	recoil PSD only
nuLat (USA)	40 MW ²³⁵ U fuel	few	Homogeneous ⁶ Li doped PS	Quasi-3D, 5cm, 3-axis Opt. Latt	Direct PMT	Topology, recoil & capture PSD
Neutrino4 (Russia)	100 MW ²³⁵ U fuel	~10	Homogeneous Gd-doped LS	2D, ~10cm	Direct single ended PMT	Topology only
PROSPECT (USA)	85 MW ²³⁵ U fuel	few	Homogeneous ⁶ Li-doped LS	2D, 15cm	Direct double ended PMT	Topology, recoil & capture PSD
SoLid (UK Fr Bel US)	72 MW ²³⁵ U fuel	~10	Inhomogeneous ⁶ LiZnS & PS	Quasi-3D, 5cm multiplex	WLS fibers	topology, capture PSD
Chandler (USA)	72 MW ²³⁵ U fuel	~10	Inhomogeneous ⁶ LiZnS & PS	Quasi-3D, 5cm, 2-axis Opt. Latt	Direct PMT/ WLS Scint.	topology, capture PSD
Stereo (France)	57 MW ²³⁵ U fuel	~15	Homogeneous Gd-doped LS	1D, 25cm	Direct single ended PMT	recoil PSD

From N. Bowden, Neutrino 2016

