

Improved Inverse Beta Decay event selection and its impact on the PROSPECT oscillation analysis

Diego Venegas Vargas

The University of Tennessee Knoxville

On behalf of the PROSPECT collaboration

October 13th – DNP2021 Meeting

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Physics Division

PROSPECT Detector at HFIR

Layout of the PROSPECT experiment

- 93% 235U Fuel
- 85 MW thermal power
- Compact core
- Huge flux in the few MeV range
- ~50% duty cycle for **BG** measurements

Schematic of the active detector volume

14 x 11 array of 6Li doped liquid scintillator for detecting reactor antineutrinos (6.7-9.2 m from compact highly enriched uranium reactor core)

Antineutrino Detection

Use of the IBD process

- PROSPECT detects antineutrinos via the Inverse Beta Decay (IBD) process
- Prompt signal (e⁺) provides a good energy estimate of incoming v
- Localized delayed (n ⁶Li) signal

- Differences in ionization density between electronic/nuclear recoil type events result in distinct pulse shapes for each event
- Prompt and delayed signal posses unique pulse shapes (different from background events)

IBD Event Selection

IBD Topology-based cuts

- Neutron Capture Region
- Prompt PSD
- Prompt-Delayed signal distance
- Prompt-Delayed Timing
- Fiducial z cut

• Veto cuts

- Muon Veto Time
- Neutron Veto Time
- Recoil Veto time

Prompt PSD Cut

Muon tracks in the PROSPECT detector

Prompt Energy Distributions Under Different Cuts

- Sequential application of selection cuts results in a significant reduction of background events
- These selection criteria was used for most recent results

Motivation for a final PROSPECT-I Analysis

Previous results were impacted by the periodic loss of photo-multiplier tube bases throughout data collection.

Detector configuration used for PRD analysis

CAK RIDGE

National Laboratory

• In order to improve upon previous results, two new data recovery approaches have been proposed:

M. Andriamirado et al. (PROSPECT Collaboration), Phys. Rev. D 103, 032001 (2021).

First Approach: Data Splitting

- Split PROSPECT-I data into distinct periods in order to recover statistics.
- Maximize number of live segments in each period

National Laboratory

Time evolution of dead channels in the PROSPECT detector

Criteria for Calibration-Based Splitting

- Each period should start immediately after a new calibration campaign
- Each period must contain one full RxOn cycle
- All periods should have RxOff data before and after each corresponding RxOn cycle
 - Period 1 is an exception since there is no prior RxOff data available.
- Keep ratio of RxOff/RxOn files between 50%-70%.
 - Since there is no calibration campaign between periods 3 and 4, we used the ratio of RxOff/RxOn files to define these two (70%).

Criteria for Calibration-Based Splitting

Second Approach: SEER

- The implementation of SEER into the existing analysis presents a great opportunity to improve our current results (statistics and S:B).
- Lacks energy and position reconstruction capabilities
- Provides a good handle on particle identification (great background suppression)

SEER prompt PSD reduces background by 2x

IBD Event Selection + SEER - New Cuts Needed

• The implementation of SEER into the existing analysis presents a great opportunity to improve our current results.

• Existing cuts:

- n-Li capture
- Prompt PSD cut
- IBD prompt-delay distance
- Prompt-delay timing difference
- Fiducial volumes

• Existing Vetoes

- Muon veto
- n-Li capture veto
- n-p recoil veto
- Pileup veto

New:

- SEER cut:
 Prompt SEER PSD cut
- SEER veto:
 - Neutron (capture/recoil) veto

IBD Event Selection + SEER - New Cuts Needed

• The implementation of SEER into the existing analysis presents a great opportunity to improve our current results.

Cut optimization including new SEER cuts - metrics

Rates[mHz/MeV

- In order to optimize the IBD selection cuts with the new SEER analysis the following data and metrics were considered:
 - 20% of the data used for the PRD
 - Effective IBD counts

$$\text{IBD}_{\text{Effective}} = \sum_{0.8MeV}^{7.2MeV} \frac{1}{(\sigma_{\text{IBD}}/\text{IBD})^2}$$

- Signal to cosmogenic background ratio (S:CB)
- Signal to accidental background ratio (S:AB)

- nH peak signal to background ratio
- nC peak signal to background ratio

Cut optimization including new SEER cuts - example Neutron Veto Time [μs]:

- IBD candidates are rejected if their delayed capture times are within μ s of another n-6Li candidate

Cut optimization including new SEER cuts - example Neutron Veto Time [μs]:

- IBD candidates are rejected if their delayed capture times are within μs of another n-6Li candidate

14

National Laboratory

Summary of Results with DS and SEER

Cut/Veto Name	Improved
Muon Veto Time	Unchanged
Neutron Veto Time	
Recoil Veto Time	New
SE Recoil Veto Time	
IBD Neutron Capture: PSD	
IBD Neutron Capture: Energy	
IBD PSD	
IBD SE PSD	
IBD SE PSD: Energy Threshold	
IBD Distance	
IBD Fiducial	

 An increase of ~50% in effective statistics is expected when including SEER cuts into our IBD selection re-optimization

	IBD Effective	IBD Effective/ calendar day	Total IBD counts	Total IBD counts/ calendar day
Latest PROSPECT				
Results	15312	160	50560	529
Period 1	<u>31</u> 24	<u>327</u>	6446	676
Period 2	7054	306	17321	759
Period 3	6004	261	16027	691
Period 4	4345	197	13862	622
Period 5	2796	155	10473	589
DS Total	23325	244	64130	670

- Increase of ~27% in total IBD counts using DS
- Increase of ~50% in effective statistics sing DS

Summary of Results with DS and SEER

Cut/Veto Name Muon Veto Time			IBD Effective	IBD Effective/ calendar day	Total IBD counts	Total IBD counts/ calendar day
Neutron Veto Time	Onchanged	Latest PBOSPECT				
Recoil Veto Time	New	Results	15312	160	50560	529
SE Recoil Veto Time		Period 1	3124	327	6446	676
IBD Neutron Capture: PSD						
IBD Neutron Capture: Energy		Period 2	7054	306	17321	759
		Period 3	6004	261	16027	691
IBD PSD						
IBD SE PSD		Period 4	4345	197	13862	622
IBD SE PSD: Energy Threshold		Period 5	2796	155	10473	589
IBD Distance		DS Total	23325	244	64130	670
IBD Fiducial						

 An increase of ~50% in effective expected when including SEER cut selection re-optimization Stay tuned for DS+SEER Analysis!

F~27% in total IBD counts using DS

~50% in effective statistics sing DS

June 2021 Collaboration Meeting, 43 Collaborators

CAK RIDGE National Laboratory

