JOINT MEASUREMENT OF THE 235U ANTINEUTRINO **ENERGY SPECTRUM BY PROSPECT AND STEREO**

Wright Laboratory

ON BEHALF OF THE PROSPECT COLLABORATION

BEN FOUST

YALE UNIVERSITY

NEUTRINO SPECTRUM MEASUREMENTS FROM POWER REACTORS

- - Neutrino events come from a mixture of fissile isotopes: ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu
 - 'Bump' in 4-6 MeV (prompt energy) range
 - Poor fit overall to leading reactor models (Huber/Mueller).

Spectrum models don't match experimental data in low enriched uranium (LEU) power reactors

WHY A JOINT MEASUREMENT

- Reactor models do not provide a sufficient prediction of the antineutrino spectrum
- > PROSPECT and STEREO are the leading measurements of the pure ^{235}U spectrum without significant contributions from other isotopes
- Both experiments' spectrum measurements are still statistics limited with relatively low systematic uncertainties
- By combining the measurements, we can increase the statistical power and produce a reference spectrum of ^{235}U for use by the community

GOALS OF THE JOINT ANALYSIS

that are consistent with each other, and quantify their compatibility

Provide ²³⁵U Antineutrino Spectrum - We must remove detector/site effects from the energy, and provide a combined ^{235}U spectrum for reference by the community

measurements

Demonstrate Compatibility - We must show that the two experiments have measurements

measurement by converting from the prompt space of each experiment to antineutrino

Compare Joint Spectrum to Model and Estimate Excess - We must quantify how the joint measurement compares to leading reactor model, and relate this to previous reactor

THE PROSPECT EXPERIMENT

- Experimental Site (HFIR, ORNL):
 - Segmented design for calibration access 85 MW HEU reactor core with 46% duty cycle
 - >99% of $\bar{\nu}_e$ flux from ²³⁵U fissions

BEN FOUST, YALE UNIVERSITY

Detector Design

- Optimized for background suppression
- Particle identification with pulse shape discrimination

J. Ashenfelter et al., NIM A <u>2018.12.079</u>

https://prospect.yale.edu/

THE STEREO EXPERIMENT

Experimental site (RHF, ILL):

- ► 58 MW HEU reactor
- Compact core
- >99% of flux from ^{235}U fissions

Target: Gd-loaded liquid scintillator Gamma-Catcher: unloaded liquid scintillator

BEN FOUST, YALE UNIVERSITY

Detector Design:

- 6 fiducial cells
- Liq. Scintillator + Gd
- Pulse shape discrimination

arxiv:2010.01876

https://www.stereo-experiment.org/

PROSPECT PROMPT SPECTRUM

- 50560 +/- 406 IBD signal events
- S:B of 1.4:1 in signal energy range (0.8-7.2 MeV)
- Best fit bump size relative to Daya Bay: 84% +/-39%
- Disfavor both 'No 235 U Contribution' and 'Only 235 U Contributes' LEU bump cases at >2 σ
- Still statistics limited

M. Andriamirado et al., Phys Rev D 103, 032001

https://prospect.yale.edu/

STEREO'S PROMPT SPECTRUM

- 43,000 Antineutrinos detected
- Significant bump observed in antineutrino energy: $A = 12.1 \pm 3.4 \%$ (3.5 σ) of spectrum at peak
- Findings between all isotope equal contribution (~9%) and only ^{235}U contributes (~16%)
- Still statistics limited

arxiv:2010.01876

https://www.stereo-experiment.org/

COMPARISON OF FRAMEWORKS

- Framework Validation:
 - 1. STEREO's Tikhonov regularization
 - 2. PROSPECT's WienerSVD unfolding method

Consistent Results

EXPERIMENTAL COMPATIBILITY

- Framework Validation:
 - 1. STEREO's Tikhonov regularization
 - 2. PROSPECT's WienerSVD unfolding method
- Comparison of PROSPECT and STEREO Datasets:

$$\chi^2 = 22.3/17$$

Statistically Compatible

UNFOLDED SPECTRUM

- Framework Validation:
 - 1. STEREO's Tikhonov regularization

$$\chi^2 = 22.3/17$$

Joint fit:

CLOSING STATEMENTS

Modern measurements from HEU reactors can investigate the LEU spectrum anomaly

> PROSPECT and STEREO have separately measured the ^{235}U spectrum at high precision, and can be further improved by combining

PROSPECT and STEREO datasets are found to be statistically compatible

Finalized results coming soon!

PROSPECT TALKS AT APS

- Saturday, April 17
 - C. Roca: PROSPECT-II Detector Upgrade Design and Expanded Physics
 - J. Gaison: Joint Analysis of the Daya Bay and PROSPECT Spectra
 - X. Lu: PROSPECT-II Calibration System
 - ► <u>B. Heffron: Machine Learning Analysis for PROSPECT</u>
- Tuesday, April 20
 - C. Cappiello: Cosmic Ray Boosted DM at PROSPECT Theory
 - M. Andriamirado: Cosmic Ray Boosted DM at PROSPECT Analysis
 - J. Palomino: PROSPECT Latest Results
 - X. Zhang: Improving PROSPECT Neutrino Measurements

PROSPECT

15 Institutions, 70 collaborators

rence Livermor onal Laboratory

prospect.yale.edu

T OF

NO DE

Funding provided by: G-SIMO

BACKUP SLIDES

SMEARING MATRIX

- unfolding to a given spectrum in antineutrino energy
- an accurate comparison with the unfolded data
- The Ac matrix for the WienerSVD is:

$$A_{Cjnt}$$
$$D_{jnt} = C^{-1}V_C W_C V_C^{\prime}$$

For more information, please refer to <u>arxiv:1705.03568</u>

The Ac, or smearing, matrix is used to apply the bias and smoothing effect from

This can and should be applied to models in true antineutrino energy to allow for

 $_{C}^{T}C(R^{T}(RR^{T})^{-1}M_{jnt})$

APS APRIL MEETING 2021

16