JOINT MEASUREMENTS OF THE 235U ANTINEUTRINO ENERGY SPECTRUM, PROSPECT WITH STEREO AND DAYABAY

BEN FOUST YALE UNIVERSITY **ON BEHALF OF THE PROSPECT COLLABORATION**

Wright Laboratory

Two Independent Analyses of 235U

e-Print: arXiv:2106.12251

e-Print: arXiv:2107.03371

NEUTRINO SPECTRUM MEASUREMENTS FROM POWER REACTORS

- Spectrum models don't match experimental data in low enriched uranium (LEU) power reactors
 - Poor fit overall to leading reactor models (Huber/Mueller).
 - 'Bump' in 4-6 MeV (prompt energy) range
 - Neutrino events come from a mixture of fissile isotopes: ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu

D. Adey et al., Phys Rev Lett 123, 111801

WHY JOINT MEASUREMENTS

- contributions from other isotopes
 - uncertainties
 - spectrum of ^{235}U for use by the community
- allows the deconvolution into a ^{235}U spectrum
 - spectrum
 - in antineutrino energy

> PROSPECT and STEREO are the leading measurements of the pure ^{235}U spectrum without significant

Both experiments' spectrum measurements are still statistics limited with relatively low systematic

> By combining the measurements, we can increase the statistical power and produce a reference

Daya Bay achieves a precise measurement of the LEU reactor spectrum with high statistics that

Adding PROSPECT into the deconvolution process gives a much better resulting DYB ^{235}U

• Combining the resulting ^{235}U spectrum with PROSPECT results in an improved ^{235}U measurement

THE DAYA BAY EXPERIMENT

Experimental site (Daya Bay, China):

- Measurement of Low Enriched Uranium (LEU) power reactors with evolving fuel composition
- Hundreds of meters from source

Detector Design:

- Gd-loaded scintillator
- Multiple monolithic detectors
- Detect events from mixture of isotopes

D. Adey et al., Phys Rev Lett 123, 111801

THE PROSPECT EXPERIMENT

- Experimental Site (HFIR, ORNL):
 - Segmented design for calibration access 85 MW HEU reactor core with 46% duty cycle
 - >99% of $\bar{\nu}_e$ flux from ²³⁵U fissions

BEN FOUST, YALE UNIVERSITY

Detector Design

- Optimized for background suppression
- Particle identification with pulse shape discrimination

J. Ashenfelter et al., NIM A <u>2018.12.079</u>

https://prospect.yale.edu/

THE STEREO EXPERIMENT

Experimental site (RHF, ILL):

- ► 58 MW HEU reactor
- Compact core
- >99% of flux from ^{235}U fissions

Gamma-Catcher: unloaded liquid scintillator Target: Gd-loaded liquid scintillator

BEN FOUST, YALE UNIVERSITY

Detector Design:

- 6 fiducial cells
- Liq. Scintillator + Gd
- Pulse shape discrimination

arxiv:2010.01876

https://www.stereo-experiment.org/

PROMPT SPECTRUM MEASUREMENTS

- information and model constraints on ²³⁸U and ²⁴¹Pu, systematics limited
- to LEU, statistics limited
- LEU, statistics limited

BEN FOUST, YALE UNIVERSITY

Daya Bay: 3.5 million antineutrinos detected, ²³⁵U and ²³⁹Pu spectrum extracted using isotope fission fraction

PROSPECT: 50 thousand ²³⁵U antineutrinos detected, sees excess most consistent with ²³⁵U equally contributing

> STEREO: 43 thousand ²³⁵U antineutrinos detected, sees excess most consistent with ²³⁵U equally contributing to

PROMPT COMPATIBILITY: PROSPECT-STEREO

- Prompt comparison avoids uncertainties of filtered unfolding!
- Move one experiment's data into the prompt space of the other with unfiltered unfolding, then refolding with the other's response

$$R_{map} = R_{STE} \cdot R_{PRO}^{-1}$$
$$M_{map} = R_{map} \cdot M_{PRO}$$

тар

No PROSPECT rate info: fit spectra with free floating normalization

 $\chi^2/ndf = 24.1/21$

Statistically Compatible Inputs

PROMPT COMPATIBILITY: DAYA BAY-PROSPECT

- Prompt comparison avoids uncertainties of filtered unfolding!
- Move one experiment's data into the prompt space of the other with unfiltered unfolding, then refolding with the other's response

$$R_{map} = R_{PRO} \cdot R_{DYB}^{-1}$$

$$M_{map} = R_{map} \cdot M_{DYB}$$

No PROSPECT rate info: fit spectra with free floating normalization

 $\chi^2/ndf = 25.4/31$

Statistically Compatible Inputs

SPECTRAL DECONVOLUTION WITH EVOLVING FISSION FRACTIONS

Pure ²³⁵U measurement from PROSPECT constrains Daya Bay isotopic deconvolution

Fission fraction

DAYA BAY'S DECONVOLVED PROMPT ENERGY SPECTRUM – UPDATED

- New results consistent with previous results
- Local deviations from scaled model (2 MeV wide windows) increase by 0.2-0.5 σ at all energies for ²³⁵U
- Relative shape uncertainty of ²³⁵U improves to 3%
- No significant change for ²³⁹Pu
- Isotopic degeneracy improved by ~20%

ANALYSIS METHOD: DATA UNFOLDING

- $M = R \times S \Rightarrow S = R^{-1} \times M$ Ideal Case:
 - S = true signal in neutrino energy
 - R = response matrix
 - M = measured signal in prompt energy

- Realistically:
 - R not necessarily invertible
 - > M has non-signal noise elements which are blown out of proportions by R^{-1}

To create a measurement independent of factors unique to each experiment, we must convert from the prompt space of each to true antineutrino energy space via 'unfolding'

DAYA BAY – PROSPECT: JOINT UNFOLDED SPECTRA

- Deconvolved spectra unfolded and regularized via Wiener-SVD* technique
- A_c smearing matrix encodes effect from unfolding regularization into any model
- Rate constraint from Daya Bay

*<u>W. Tang et al, JINST 12, P10002 (2017)</u>

PROSPECT-STEREO: UNFOLDED SPECTRUM JOINT SPECTRUM

- Use the Tikhonov method to present result

PROSPECT-STEREO: BUMP SEARCH

- sigma values to the excess
- $(2.4\sigma \text{ significance})$

CLOSING STATEMENTS

- Precision measurements needed to resolve origin of the LEU excess
- PROSPECT dataset found to be statistically compatible with both Daya Bay and **STEREO** datasets
- PROSPECT and Daya Bay have produced a jointly deconvolved reactor antineutrino spectrum which improves both ²³⁵U shape uncertainty to 3% and ²³⁵U-²³⁹Pu correlations by ~20% from Daya Bay-only results.
- PROSPECT and STEREO have successfully combined their separately measured high precision pure ^{235}U spectra, which finds an excess with 2.4σ significance in the 5-6 MeV energy range consistent with equal contribution to LEU excess
- Look out for STEREO's updated dataset, preliminary results shown at EPS-HEP!

OTHER PROSPECT TALKS AT DNP

- Today (Tues):
 - experiment Thomas J Langford
 - Kunkle

 - Poster Session: HA.00031: Directional Neutrino Detection with PROSPECT Manjinder Oueslati
- Tomorrow (Wed):
 - LK.00006: PROSPECT-II calibration strategy Xiaobin Lu
 - Roca Catala
 - Diego C Venegas Vargas

FK.00006: PROSPECT-II: Physics goals with an upgraded precision reactor oscillation and spectrum neutrino

FK.00007: Working Towards an Absolute Reactor Antineutrino Flux Measurement using PROSPECT-I Data - Paige

FK.00008: Reactor Background Measurements at HFIR in Support of the PROSPECT-II Experiment - Blaine Heffron

LK.00007: Improved Event Reconstruction and Spectrum Analysis using PROSPECT Antineutrino Data - Christian

LK.00008: Improved Inverse Beta Decay event selection and its impact on the PROSPECT oscillation analysis -

PROSPECT

15 Institutions, 70 collaborators

rence Livermor onal Laboratory

prospect.yale.edu

Funding provided by: G-SIMO

T OF

