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PROSPECT Overview
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Machine Learning Activities

e Particle identification using sparse convolutional neural

networks
« Single ended event reconstruction
e Antineutrino energy and position reconstruction with deep

networks
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Convolutional neural networks with PROSPECT data

Convolutions are nxn windows consisting of frainable weights
that move over the 14x11 segments of the detector

Each weight is multiplied with the physics quantities at each
segment and summed together to form a fransformed output

The final stage consists of “fully connected” layers used to
transform the outputs into a classifier

2 models - one with calibrated physics quantities (energy, timing,
position, pulse shape), one with full waveform
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CNNs for Positron |dentification - Test dataset (simulation)
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CNNs for Positron ID results (simulated data)
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CNNs for single ended Z position reconstruction

e Datasetis gommaq, electron, and
positron simulations (0-2 MeV,
randomly distributed throughout
detector volume)

e Neural network is only frained on
Single Ended segment predictions

e Network consists of series of
pointwise (kernel size = 1) and 3x3
convolutions with padding set to |
to obtain z predictions for each cell

e Train weights by minimizing the
single ended z position error based

on simulation frue z position
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.032001

[ position reconstruction results
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Simulated IBD Energy Reconstruction (work in progress)
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R-squared scores show an outperformance of fully connected neural net over traditional maximum
likelihood estimate with large gap in performance for ‘non-ideal’ detector (except very low energies)
Thin band artifact in middle bottom plot is not correlated with energy spectrum (shows up in both

training with uniform or reactor spectrum) -likely related to dead neurons associated with poor events. John Koblanski UH

Manoa



Summary

 Neural network is able to distinguish between positron and
gamma events; work is ongoing to apply this to current IBD
selection

e There is some evidence that we can extract more information
from the detector pulses for the purposes of particle
identification and single ended position reconstruction

e Preliminary results from IBD energy reconstruction using neural
networks is promising

 Work is ongoing to apply the models to real data
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