Precision Reactor Oscillation and SPECTrum Experiment

Xianyi Zhang for the PROSPECT collaboration ICHEP 07/07/2018

Motivation

The antineutrino flux measured by reactor experiments showed ~6% deficit from prediction.

 The θ₁₃ experiments' antineutrino spectral measurements indicated 8-10% excess at 4-6 MeV Inverse Beta Decay (IBD) positron energy.

Experiment Design

A short baseline reactor antineutrino experiment. We aim to:

- Measure the spectrum of antineutrino from a Highly Enriched U-235 reactor (HEU).
- Probe the oscillation that involves a light sterile neutrino, model independent.

-0.2 -0.1 0.0

Reactor:

- High Flux Isotope Reactor (HFIR), at ORNL.
- Size: d x h = 43 cm x 50 cm.
- ✤ Power: 85 MW.
- ♦ 235 U enrichment > 93%.
- Antineutrino from $^{235}\text{U} > 99\%$
- **♦** Duty cycle: 41-47%, ~ 24 days.

Detector:

- Optically Segmented.
- ✤ ⁶Li loaded liquid scintillator.
- ♦ Mass: ~4 ton

J.Phys. G43 (2016) no.11, 113001

Strategy to Probe Sterile Neutrino Oscillation

◆ Precisely measure the antineutrino spectrum from ²³⁵U dependent on baseline.

★ To be reactor model independent, we compare the spectral shape of each baseline to the spectrum measured by full detector.

Detector Design

The detector currently covers baseline in 7-9 m.

- Minimal overburden.
- High reactor correlated background.

- Optically segmented antineutrino detector (AD) filled with 4 ton of ⁶Li doped EJ-309.
- The 14x11 elongated elemental ADs (cells) separated by low-mass reflector panels.

Detector Design

Detector Design

Measurement Strategy

electronic recoil

2.0

2.5

1.5

1.0

Energy (MeV)

- Detect (IBD) process of antineutrinos.
- The **β**⁺ event (prompt event) and *n*-capture event (~40μs delayed event) of LiLS generated scintillation light.
- The Pulse Shape Discrimination (PSD) of scintillator distinguishes the β +-like event and *n*-like events.

IBD Selection

IBD events are selected based on the PSD, timing coincidence, topology and position.

Actively suppressed more than 10⁴
background events.

Assembly and Installation

Energy Reconstruction

PRSPECT₇

Single cell reconstructed E

from ²²Na calibration

Data

Monte Carlo

• We utilized gamma sources to study single cell and full detector energy response.

The cosmogenic neutron induced ¹²B beta events used to characterize β energy reconstruction.

◆ Light collection: 795±15 PE/MeV.

Rate [Hz/10keV] 70

60

50

40

30

20

10

FI IMINARY

Detector Stability and Uniformity

May 30

Date in 2018

²¹²Bi→²¹²Po→²⁰⁸Pb

 β - α E stability

Apr 30

1.002

1.000

0.998

0.996

Mar 31

The BiPo β-α coincident event showed reconstructed E variation over time ~1%.

The 137Cs source was deployed through out the detector to characterize the relative E scale uniformity $\sim 1\%$

The 227Ac dissolved in LiLS allowed us to measure the relative target mass difference with its α - α rate in each cell.

Antineutrino Observation

♦ We collected 1254±30 (614±20) correlated events during the first reactor on (off) day in energy range 0.8 - 7.2 MeV.

* The data released so far contains: **33 reactor on** days and **28 reactor off** days.

The IBD selection was frozen based on 3 days of reactor on data.

Rate and Spectrum vs Baseline

PROSPECT

The $1/r^2$ event rate decrease was observed in the 12x9 cell fiducial volume of detector.

The fiducialized detector cells were zoned into 6 baseline bins to perform spectral comparison.

To be model independent, the spectrum of each baseline was compared against to the normalized spectrum measured by full detector.

Search for Sterile Neutrino Oscillation

- Feldman-Cousins based confidence intervals for oscillation search
- Covariance matrices captures both systematic and statistic uncertainties and energy/baseline correlations
- Critical χ^2 map generated from toy MC using full covariance matrix
- 95% exclusion curve based on 33 days Reactor On operation
- Direct test of the Reactor Antineutrino Anomaly.

Disfavors RAA best-fit point at >95% CL (2.3σ)

Exclusion and sensitivity of PROSPECT with current data *PROSPECT, arXiv:1806.02784*

Conclusion and Outlook

- PROSPECT started taking data on March 6, 2018
- Detector performing well. Background rejection and energy resolution meet expectation and MC.
- Observed antineutrinos from HFIR with good signal/background.
- Observation of reactor antineutrinos can be achieved in PROSPECT at 5 statistical significance within two hours of on-surface reactor-on data-taking.
- *****Observed an energy spectrum of antineutrinos at the Earth's surface (1mwe overburden) with 24 hours of data
- **Working towards a high-statistics ²³⁵U spectrum measurement**
- Opportunity for detailed understanding of cosmogenic backgrounds
- * First oscillation analysis on 33 days of reactor-on data disfavors the RAA best-fit at 2.3 σ (arXiv: <u>1806.02784</u>)

Thank you!

Backup Slides

Backup - PSD Performance

Excellent particle ID of gamma interactions, neutron captures, and nuclear recoils

Dominant backgrounds: Cosmogenic fast neutrons, reactor-related gamma rays, reactor thermal neutrons. (Vast majority identified and rejected by PSD for Prompt and Delayed signals)

