PROSPECT: The Precision Reactor Oscillation and **SPECTrum experiment**

James T. Matta

Oak Ridge National Laboratory

On behalf of the PROSPECT Collaboration

- Neutrino Physics
 - Brief history of the neutrino
 - Sources and cross-sections
 - Present day
- ORNL Neutrino Opportunities
 - HFIR
 - Fission and β -decay
- PROSPECT
- Summary

Neutrino Physics

A Brief History of the Neutrino

- 1896 Becquerel: Discovers of radioactivity
- 1899 Rutherford: Two types of emission: α and β
- 1911 Meitner and Hahn: βs have a continuous spectrum
- 1930 Pauli proposes the neutrino
 - "I have done a terrible thing. I have postulated a particle that cannot be detected."

A Brief History of the Neutrino

- 1956 Cowan and Reines detect the electron neutrino
 - ½ of 1995 Nobel prize to Reines
- 1962 Danby et al. detect the muon neutrino
 - 1988 Nobel prize to Lederman, Schwartz, and Steinberger
- 1970 The Homestake Experiment The Solar Neutrino Problem
 - 1/2 of 2002 Nobel Prize to Davis and Koshiba
- 1998 Neutrino Oscillations Solve the Problem
 - 2015 Nobel Prize to Kajita and MacDonald

See Also: Ivan V. Anicin, The Neutrino – Its Past, Present, and Future arXiv:physics/0503172 [physics.hist-ph]

Neutrino Sources: Fluxes

OAK RIDGE

Neutrino Sources: Cross-Sections

Present Day: Open Questions

- Why are the neutrino masses so small?
- What is the neutrino mass ordering?
- Is the neutrino Majorana or Dirac?
- Are there more neutrino flavors?
- What is the source of the current anomalies?

Present Day: New Anomalies

- LSND Los Alamos National Lab
 - Observed an excess of neutrinos
- MiniBooNE Fermi Lab
 - Observed an excess of neutrinos below 500MeV
 - No excess above 500MeV
- The Gallium Anomaly
 - SAGE Baksan Neutrino Observatory
 - GALLEX Gran Sasso
 - Both observed deficit in neutrino induced ⁷¹Ge production

GALLEX

and SAGE

- The Reactor Anomalies
 - Deficit in measured neutrinos compared to models
 - "Bump" in shape between 4-6MeV compared to models

15 12.5

7.5

LSND

ORNL Neutrino Opportunities

CAK RIDGE

ORNL Neutrino Sources: HFIR

Modular Total Absorption Spectrometer - MTAS

~1ton of Nal(TI)

Allows measurement of total gammaray energy output of fission daughters, extract β -decay strength functions

MTAS – Why is it necessary? The Pandemonium Effect

- Fragmentation of decay strength at high excitation energy due to high level density.
 - Low efficiency high resolution experiments overestimate the branching to low energy levels.
 - Shifts deduced \bar{v}_e spectra up

PROSPECT Outline

- Overview
- Motivation
- The Detector
- Backgrounds
- Progress

Overview

- Model independent search for neutrino oscillations into eV-scale sterile states
- Precision measurement of an HEU reactor spectrum with the best energy resolution to date
- Complement existing LEU reactor measurements
- Most precise ²³⁵U spectrum measurement
- Compare reactor \overline{v}_e spectrum models
- Provide a benchmark for future reactor \overline{v}_e experiments
- ~160k IBD/year
- Resolution better than $4.5\%/\sqrt{E}$
- S/B of 3:1
- We also hope to:
 - Measure total absolute reactor flux
 - Observe \bar{v}_e from spent nuclear fuel

Motivation - Reactor Anomalies

- Measured Flux Shortfall
 - Bad β-decay data or oscillation to a sterile neutrino?

- Bump at 4-6 MeV
 - Problem with a single fission fuel isotope or multiple?

Motivation - Reactor Modeling and Monitoring

- Neutrinos are excellent messenger particles for harsh environments
 - Putting a detector inside a reactor will destroy it
 - Putting a non-neutrino detector outside a reactor will give heavily scattered and shifted results
 - Putting a neutrino detector outside a reactor allows you to directly monitor activity in the core, and possibly, type of core

The Detector - Principle of Detection

The Detector - Design

OAK RIDGE

The Detector - Oscillation Search

- Relative spectrum measurement between independent detectors
- Segmentation gives clear baseline dependency
- Independent of reactor flux and spectrum models
- Relative measurement and movement minimize systematic errors

Backgrounds - Shielding

Background Characterization

- Thermal Neutron Backgrounds
- Gamma-ray Backgrounds
- Stray Magnetic Fields
- Cosmic Ray Backgrounds

Backgrounds - Characterization

- Detector Array for measurement of Neutrons and Gammas (DANG)
 - 8 large volume NaI(TI) detectors
 - 2"x4"x16"
 - 6 NE213 liquid scintillator detectors
 - 1.2 Liters
 - 2 ³He Detectors
 - 2"x24" 10 Bar
 - Custom DAQ Oak Ridge Conditions at HFIR DAQ (ORCHID)
 - Designed to cope with very high rates

Backgrounds – Spatial Variance

Backgrounds – Temporal Variance

Current Progress - Timeline

CAK RIDGE

Site Preparation

- Activities
 - Installation of shield wall for background reduction
 - Leveling of floor for detector movement system
 - Removal of partition wall for detector movement.

Construction

LiLS Accumulation Is Nearly Finished

• PROSPECT will:

- Make a precision ²³⁵U spectrum measurement, complementing LEU measurements.
- A Make a model independent search that will cover the sterile neutrino oscillation best-fit point at better than 3σ in one calendar year
 - Cover favored regions at 3σ in 3 years
- Test ²³⁵U as the source of the 4-6MeV "bump"
- Detector construction is proceeding quickly.
- Detector will be in HFIR before the end of December
- First data taking will begin before the end of Feb 2018
- Preparations for deployment are in full swing
- Backgrounds, reactor on and off, have been characterized

The PROSPECT Collaboration

4 National Labs 10 Universities 68 Collaborators

Science

prospect.yale.edu

International Competition

Experiment	Neutrino Source	Overburden (mwe)	Detection Material	Segmentation	Optical Readout	Particle ID Capability
DANSS (Russia)	3000 MW Reactor LEU Fuel	~50	Inhomogeneous PS & Gd Sheets	2D, ~5mm	WLS fibers	Topology only
NEOS (South Korea)	2800 MW Reactor LEU Fuel	~20	Homogeneous Gd-doped LS	None	Direct double ended PMT	Recoil PSD only
nuLat (USA)	40 MW Reactor HEU Fuel	few	Homogeneous ⁶ Li-doped PS	Quasi-3D, 5cm 3-axis Optical Lattice	Direct PMT	Topology, recoil & capture PSD
Neutrino4 (Russia)	100 MW Reactor HEU Fuel	~10	Homogeneous Gd-doped LS	2D, ~10cm	Direct single ended PMT	Topology only
PROSPECT USA	85 MW Reactor HEU Fuel	few	Homogeneous ⁶ Li-doped LS	2D, 15cm	Direct double ended PMT	Topology, recoil & capture PSD
SoLid (UK Fr Bel US)	72 MW Reactor HEU Fuel	~10	Inhomogeneous ⁶ LiZnS & PS	Quasi-3D, 5cm multiplex	WLS fibers	Topology, capture PSD
Chandler (USA)	72 MW Reactor HEU Fuel	~10	Inhomogeneous ⁶ LiZnS & PS	Quasi-3D, 5cm 2-axis Opt. Latt	Direct PMT/WLS Scint	Topology, capture PSD
Stereo (France)	57 MW Reactor HEU Fuel	~15	Homogenous Gd-dopes LS	1D, 25cm	Direct single ended PMT	Recoil PSD
SOX (Italy)	2-4 PBq ¹⁴⁴ Ce or 200-400 PBq ⁵¹ Cr	~3400	Homogenous undoped LS	Virtual, Photon Time of Flight	Many PMTs	

NAA Sources

- Exotic gamma-ray sources, on demand
 - High Energy
 - ²⁴Na
 - ⁴⁹Ca
 - ⁵⁶Mn
 - Low Energy
 - ¹¹³Sn
 - ^{139,141}Ce
 - ¹⁸²Hf
 - ¹⁹⁸Au

Material produced at HFIR

- ~100 neutrons per second
- Made by dilution of stronger source solution
 - Stronger source benchmarks strength of weaker

²²⁷Ac Spike

- Dissolve 2Bq of ²²⁷Ac in LiLS
- Allow relative calibration of cell volume
- Allows testing position reconstruction systematics

Cosmic Ray Measurements and Plans

- Simple plastic panel coincidence counter
 - Removable bismuth plate between panels

vs. No Bismuth Coincidences: Angle = 10 Degrees

Magnetic Field Maps

Stereo invested in magnetic shielding do we need to?

Nope

HMMT-6J18-VF hall probe connected to a Lakeshore 475 DSP gaussmeter

Recent Daya Bay Result

IDGE

OAK R National Laboratory

Daya Bay Collaboration Phys. Rev. Lett. **118**, 251801 (2017)

Oscillation Search

Why a Movable Detector?

