Towards a Joint Constraint of the ²³⁵U Reactor Antineutrino Spectrum by Combining the Daya Bay, PROSPECT, and STEREO Measurements

Jeremy Gaison* for the Daya Bay, PROSPECT, and STEREO collaborations

Precision Reactor Neutrino Measurements Needed

- Spectral distortions from model measured in previous experiments
- Measurements made in LEU reactors with mixture of fuel isotopes
- HEU reactor measurements allow for direct measurements of ²³⁵U
- Contributions from individual isotopic fuels like ²³⁵U crucial in constraining theoretical models

F. P. An et al., Ch Phys C 41, 1

Individual Experiments Contribute Complementary Measurement Strategies

Daya Bay

- Multiple monolithic detectors
- 3.5 million antineutrinos
- Gd-doped scintillator
- 235U spectrum extracted from deconvolution of measured spectrum vs isotope fission fraction of LEU reactors

D. Adey et al., Phys Rev Lett 123, 111801

PROSPECT

- Single segmented detector
- 50,000 antineutrinos
- Li-loaded liquid scintillator
- ~10m from HEU reactor, direct measurement of ²³⁵U https://prospect.yale.edu/LatestResults

STEREO

- Single segmented detector
- 43,000 antineutrinos
- Gd-loaded liquid scintillator
- ~10m from HEU reactor, direct measurement of ²³⁵U

https://www.stereo-experiment.org/publications.pnp

Data Unfolding Allows for Direct Comparison of Measurements in Different Energy Spaces

- Unfold data from measured prompt energy space into antineutrino energy space
- Reconstruction via inverse response without regularization amplifies statistical fluctuations

• Utilize Wiener-SVD[†] technique for data unfolding and selection of regularization parameter

*W. Tang et al, JINST 12, P10002 (2017)

Uncertainty from Data Unfolding is Minimized with Wiener-SVD Regularization

- Average over 1000 toys used to demonstrate effectiveness of Wiener-SVD unfolding for each data set
- Regularized unfolding suppresses fluctuations while keeping bias to order 1-2% percent for majority of fission spectrum

Combination of Measurements Leads to Increased Spectral Precision

Error bars based on diagonal elements of full covariance matrix

Significant increase in precision when combining all measurements

- Joint measurement uses shape constraints from each experiment with relative normalization allowed
- Unfolded uncertainty has strong bin-to-bin correlations
- Sigma metric is sum over all independent and correlated uncertainties to better reflect the uncertainty space

Collaborations

