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Abstract:

Neutrino experiments have uncovered results that appear to be incompatible with the 3-neutrino mixing pic-
ture. The existence of sterile neutrino oscillations, proposed as a possible solution for tying together these
anomalous results, would open a portal to new physics beyond the Standard Model (BSM). In addition to
exploring the rich possible new physics for its own sake, it is also crucial to explore the sterile neutrino
oscillation parameter space to eliminate ambiguity in the interpretation of results from future CP-violation
experiments and to properly assess the sensitivity of future neutrinoless double beta decay experiments.
Several experiments individually have excluded significant portions of this parameter space based on their
source energies and the source-detector distances. By performing analyses on a combination of data sets
from different experiments to form a single region of excluded or preferred parameter space (called joint
analyses), neutrino physics experimental collaborations can completely leverage the statistical power of
their data sets while forming a reliable, coherent view of the remaining available regions of the BSM pa-
rameter space in question. This LOI overviews the benefits of experimental collaborations performing
joint oscillation analyses, while also highlighting attractive joint sterile oscillation opportunities that can be
performed with current and future experiments, as well as the challenges involved.
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Introduction

A picture of 3-neutrino oscillations has been well established in the past 20 years by a combination of
various experimental efforts using multiple neutrino interaction channels [1-4]. However, some experi-
mental data from reactor [5, 6], accelerator [7, 8], and radioactive source [9, 10] experiments exist that are
not fully consistent with this framework. If interpreted as oscillations involving sterile neutrino states, the
suggested oscillation mass splittings Am? are at the eV-scale [5, 11]. Several reactor experiments specifi-
cally conceived to search for eV-scale sterile neutrinos already excluded much of the suggested parameter
space [12—15]. Additionally, a wider range of oscillation frequencies are also excluded by joint analyses
from a combination of experiments probing 3-active neutrino flavor oscillations [16, 17]. To cover the full
range of parameter space and to eliminate ambiguities in other measurements, including CP-violation mea-
surements [ 18], a broader combination of experimental results is needed. Such experimental combinations
can be achieved with modest research investment, paving the way for a comprehensive picture of sterile
neutrino searches within the upcoming decade.

Joint Experimental Oscillation Analyses

We define a joint experimental oscillation analysis as a coordinated effort by members of those ex-
periments resulting in favored/disfavored regions of the relevant oscillation parameter space through the
simultaneous consideration of all the corresponding data sets. A joint fit is the most natural way to imple-
ment such an analysis, where a simultaneous scan is performed through the full parameter space of all the
involved experiments, including oscillation and nuisance parameters. Depending on the anticipated impact
of experimental correlations, a simpler joint analysis — such as with Gaussian CLs [19] — that may not neces-
sitate simultaneous joint fitting can also be performed. Joint analyses, when performed by the experimental
groups themselves, have the following main advantages:

1) Proper treatment of systematics and correlations: Experimental internal systematical effects and inter-
experiment correlations have to be properly accounted for. This can be done most effectively when the joint
analyses are performed by the members who have intimate knowledge of the experimental configurations.
2) Increased parameter space coverage: Experiments performing searches for sterile neutrinos cover a
disparate range of baselines and energies. Combining the data from multiple experiments gives access to a
broader range of distance over energy, L/E, and consequently to wider regions of parameter space.

3) Redundancy and reduction of systematic effects: The consideration of multiple data sets provides
valuable redundancy for overlapping regions of parameter space and diminishes the impact of any unknown
experiment-specific oscillation-mimicking systematic effects from a single experiment.

4) Sensitivity to terms in extended PMNS matrix: Individual sterile neutrino searches from single ex-
periments are typically carried out in a 3 (active) + 1 (sterile) framework. The use of multiple experimental
configurations covering a wider range of L/FE values enables increased ability to distinguish between 3+1
phenomenology and other more complex non-standard scenarios.

In performing these experimental joint analyses, the use of proper statistical methods is imperative. In
cases where Wilks’ theorem is not valid [20], Monte Carlo (MC) methods [21] are preferred. This can
become restrictively expensive from a computational standpoint when a large number of multi-experiment
MC simulations have to be generated and fit. Other computationally inexpensive alternative statistical
methods such as the Gaussian CL; [19] method can be used to set exclusion limits, specifically when
experiments have a low degree of correlation between their systematic uncertainties.

Opportunities for Joint Analyses

Several exclusion limits from a variety of current experiments and their combination already exist.
Within the reactor neutrino sector, short-baseline experiments like PROSPECT [12], STEREO [13] set
limits on sin?(2614) for mass splittings Am?, in the ~ 0.5 eV? — 10 eV? regions, and medium-baseline
experiments like Daya Bay [4] cover lower values of ~ 0.5 x 1072 eV2 — 0.1 eV2. Additionally, the
accelerator experiments MINOS and MINOS+ set limits on sin?(2624) for Am2, > 10~ eV?2. Joint ex-
perimental oscillation analyses have already been performed on the MINOS+, Daya Bay, and Bugey-3 data
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by the MINOS+ and Daya Bay collaborations [ 16, 17]. These combined results exclude most of the parame-
ter space suggested by the LSND anomaly as well as the combined analysis of all anomalous short-baseline
signatures.

New joint experimental oscillation analyses should be performed with data from currently running or
recently completed experiments. A joint analysis of data between medium-baseline and short-baseline
experiments like Daya Bay and PROSPECT will improve coverage at oscillation frequencies in the range
of 0.1 eV2 — 0.5 eV?2, where neither of the experiments are by themselves strongly sensitive. A joint
analysis of short-baseline experiments, like PROSPECT and STEREO [13], will provide redundancy in
coverage of similar oscillation space and reduce the impact of systematic effects. Short and medium-
baseline experiments can also be combined with long-baseline experiments such as MINOS+; this would
improve over existing limits, particularly at high Am? (>1 eV?), where current analyses rely on the Bugey-
3 spectrum measurements from the 1980s, and at very high Am? (~ 10 eV?). These possibilities are already
under active discussion by the members of these collaborations.

Data from upcoming experiments will further improve the reach of joint experimental oscillation analy-
ses. A good example is the TAO reactor 7, experiment, which will begin taking data in 2022 at a baseline of
~30 m [22]. A combined analysis of Daya Bay + PROSPECT + TAO would provide full reactor 7.-based
experimental coverage of all oscillation frequencies suggested by the Reactor Antineutrino Anomaly [5].
The SBN Program [23] will search for oscillations using a v/, beam, and will cover parameter space relevant
to LSND and MiniBooNE, with best sensitivity in a mass splitting regime (1-20 eV? [24]) where coverage
in the current joint analysis is reliant on knowledge of the absolute flux and spectrum of the NuMI neu-
trino beamline. In contrast, oscillations in this parameter space region would exhibit themselves as broad
variations in measured energy spectra between SBN detectors. SBN would also add substantial systematic
redundancy to a joint experimental oscillation analysis, given its differing beam energy (<1 GeV), neutrino
interaction regime, and detection technology (LArTPC) compared to MINOS+.

A wide coverage of oscillation parameter space with built-in redundancy can be achieved by a joint
analysis of multiple experiments searching for oscillations in different channels. Such a comprehensive
joint analysis can be achieved by the mid-2020s with a combination of PROSPECT + SBN + TAO + Daya
Bay 4+ MINOS+. In this scenario, PROSPECT and SBN would provide best differential coverage of high
frequency oscillations, TAO would best cover medium frequencies, and Daya Bay and MINOS+ would
anchor limits at lower frequencies. On longer timescales, the DUNE experiment [25] proposes to provide
disappearance measurements in all possible channels: ve, v, Ve, and 7,,. Such a broad array of highly
sensitive, systematically correlated measurements is likely to substantially benefit the reach of experimental
joint oscillation analyses on the 10-20 year timescale.

Challenges of Joint Analyses

It must be acknowledged that there are challenges involved in performing joint analyses. Experiments
operate under independent timelines and priorities, making it impractical - sometimes downright impossible
- to find the workforce to devote such efforts. Moreover, the time it currently takes to carry out such a
cross-experimental effort from start to finish, which includes agreeing on the scope and methods to be
used, sharing the data, and carrying out the analysis, can be quite large, typically extending beyond one
year. Finally, experience shows that social and political obstacles can arise that prevent collaborations from
working together.

To mitigate these challenges, the community could consider investing the necessary resources to build a
common fitting framework with well-defined format(s) for data sharing. By standardizing the joint analysis
process and the inputs, such a framework would greatly reduce the time and effort needed, and would make
it easier for more experiments to participate. Similarly, experiments should be highly encouraged to engage
in well-documented and comprehensive data releases that allow others to reproduce their results, even after
they have ceased to operate. The contents of the data to be shared should be arrived at in consultation with
other stakeholders in the community. The authors of this LOI do not claim to have all the answers, but
would like to emphasize the importance of discussing these issues in the context of the Snowmass process.
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