

PROSPECTs for Sterile Neutrino Searches at Reactors

Pranava Teja Surukuchi Illinois Institute of Technology (on behalf of the PROSPECT collaboration)

Nu HoRIzons VII

- Reactor neutrinos and antineutrino flux/spectrum predictions
- Reactor anomalies
- Global efforts addressing anomalies
- PROSPECT experiment

Reactors as Neutrino Sources

Neutrinos are prolific source of neutrinos

~10²¹ neutrinos per GWth per second

Reactor played crucial role in neutrino history

Discovery

Cross-section measurements

Multiple mixing angle measurements

2016 Breakthrough prize

Estimating Neutrino Flux and Spectrum

$$S(E_{\nu}) = \frac{W_{th}}{\Sigma_i (f_i/F) e_i} \Sigma_i \frac{f_i}{F} \left(\frac{dN_i}{dE_{\nu}}\right)$$

ab initio approach

- Use existing databases and sum the spectra from all the beta decay branches
- Databases are incomplete and uncertainties are big

Conversion method

- Measure beta spectrum and fit it to virtual branches to convert to neutrino spectrum
- Assumptions impact the output i.e., forbidenness, weak magnetism and finite size corrections etc.

Hybrid Approach

• *ab initio* for available data and use virtual beta branches for the rest

Anomalies

Reactor antineutrino experiments observe deficit in antineutrino rates compared to the predictions

Recent Θ_{13} experiments at LEU reactors observe spectral deviations

Could be a contribution from a single isotope or multiple isotopes

Motivates reactor experiment with different fuel types and good energy resolution

Additional sterile neutrino could be a possible reason for the deficit

Large mass splitting -> ~Meter length oscillations

Motivates short-baseline experiment with compact source, good position resolution

- Daya Bay has recently reported IBD yields of U235 and Pu239 using evolution of LEU reactor fuel
- Showed that reactor flux models are incorrect at least for U235

Reactor Antineutrino Anomaly ?

- U235 preferred to be the cause when a single isotope is assumed to be the cause for the anomaly
- No reason to assume a single isotope is the cause for anomaly

 IBD yields calculated from reactor rates (of 26 reactor antineutrino experiments) do not agree with Daya Bay measurement

- Daya Bay results in global context creates tension in IBD yields
- Oscillation to sterile states not considered

Possible, but not definite

Further Perspective

$$\chi^{2} = \sum_{a,b} \left(\sigma_{f,a} - \sum_{i} F_{i,a} \sigma_{i} \right) V_{ab}^{-1} \left(\sigma_{f,b} - \sum_{i} F_{i,b} \sigma_{i} \right) + \frac{(\sigma_{1}^{th} - \sigma_{1})^{2}}{V_{\text{ext},11}}.$$

- A combination fit with Daya Bay evolution data and global reactor rate data with only constraints on the ²⁴¹Pu was generated
- ²³⁸U IBD yield obtained is ~2σ away from prediction
- Possible reasons for this discrepancy:
 - Sterile neutrinos + Wrong ²³⁵U or ²³⁹Pu flux estimates
 - Wrong ²³⁸U and ²³⁵U and/or ²³⁹Pu flux estimates
 - Incorrect experimental IBD yields

Motivates an experiment that truly probes the L/E nature of oscillations

Global Efforts

Experiment		Reactor/Fuel	Baseline (m)	Mobility	Detection Material	Segmentation	Readout	Energy Resolution	PID	Status
DANSS Kalinin nuclear reactor (Russia)	5 strips = 20 cm 5 strips = 20 cm 5 strips = 20 cm 74 73 73 72 72 72 72 72 72 72 72 72 72	3000 MWth LEU	10.7-12.7	Yes	PS+Gd Sheets	2D, 5mm	WLS fibers + SiPM and PMT	25%/√E	Topology	Collecting data
NEOS Hanbit nuclear power complex (Korea)		2800 MWth LEU	~24	No	GdLS	-	PMT Double- ended	5% @ 1MeV	Recoil PSD	Phase-1 complete
Neutrino-4 SM-3 reactor (Russia)		100 MWth HEU	6-12	Yes	GdLS	2D, 10 cm	PMT Single- ended	Not available	Topology	Phase-1 complete
PROSPECT High Flux Isotope Reactor (USA)	r	85 MWth HEU	7-12	Yes	⁶ LiLS	2D, 14.6 cm	PMT Double- ended	4.5%⁄√E	Topology + recoil and capture PSD	Commissioning and installation in progress
Soliō BR2 research reactor (Belgium)	V Sold Lap 20 m North Sold Control of Contr	40-80 MWth HEU	6-9	No	PVT cubes+ ⁶ Li:ZnS(Ag) sheets	3D, 5 cm	WLS fibers + SiPM	20%/√E	Topology + capture PSD	Collecting data
STEREO ILL research reactor (France)	Pinkan fait aller up ch	58 MWth HEU	9-11	No	GdLS	2D, 25 cm	PMT Single- ended	12% @ 2 MeV	Recoil PSD	Collecting data

Some values from Mauro Mezzetto, neutrino 2016

DANSS and NEOS performed oscillation analysis

NEOS - Experimental Setup

Experiment Location

- 2.8 GWth LEU reactor
- · 3.1 m diameter x 3.7 m height
- Detector 24 m away
- ~20 mwe overburden

Detector Characteristics:

LS:

- 1008 L single volume tank
- LAB+UG-F (9:1) with 0.5% Gd
- 38 x 8" PMTs in mineral oil buffer
 Shielding:
- Passive 10 cm BPE and 10 cm Pb
- Active 50T muon veto on 5 sides
- Chimney for source calibration
- Resolution = 5 % @ 1 MeV

Data:

- 180 days reactor on and 46 reactor off
- 1976.7±3.4(85.1±1.4) reactor on(off) IBDs/day
- S:B = ~23

NEOS - Results

- 5 MeV bump seen at this short baseline
- Relative comparison between NEOS and modified Daya Bay near spectrum
- Normalization and covariance
 matrices unclear
- No strong evidence for oscillations
- Take DYB quoted unfolded covariance matrices Convolve with detector response matrix Add stats and detector syst

- Plan to restart taking data for a longer period
- Observe fuel evolution over 500 days
- Different range of fission fractions from Daya Bay

Daya Bay unfolded spectrum modified to account for different fission fractions. Detector response applied to it.

- NEOS/H-M-V

🔶 NEOS/Daya Bay

Systematic total

Systematic total

(b)

(c)

DANSS - Experimental Setup

Experiment Location

- 3 GWth LEU reactor
- · 3.1 m diameter x 3.7 m height
- Detector **10.7-12.7 m** away
- ~50 mwe overburden

Detector Characteristics:

- Movable detector
- 2500 polystyrene-based scintillator strips
- Gd coating with 0.35% by weight
- 3 WLS fibers: 1 fiber readout by SiPM side fibers bunched and read out by PMT

Shielding:

- Passive 5 cm electrolytic copper, 8 cm BPE, 5 cm Pb, and 8 cm BPE
- Active Muon veto on 5 sides
- Resolution = 25 %

DANSS - Data

- •Data collected for 222 days
- •~5000 events/day in fiducial volume at the closest position
- •3 baselines at 3 positions
- •1/R² dependence observed
- •For oscillation analysis, ratio of spectrum at 10.7(up) m to 12.7m(down) fit to oscillation model
- Used gaussian CLs method for fitting
- •Unclear on the systematics taken into account
- •Best-fit points excluded at 90% CL

- Plan to continue data taking
- Perform better calibration and systematic studies
- Use Feldman-Cousins method

Danilov at Solvay Workshop

PROSPECT Experiment

Physics Goals:

1.Precisely measure reactor ²³⁵U $\overline{
u}_e$ spectrum

2.Search for short-baseline oscillations arising from eV-scale sterile neutrinos

Oscillation Search

- Perform a relative spectrum measurement between 154 independent detectors (segments)
- Identical segments provide clear baseline-dependent spectrum ۲
- Independent of underlying reactor flux and spectrum models ۲

Systematic effects minimized by relative search and detector movement $oldsymbol{O}$

 m_{14}^{2}

⊲10⊧

- Estimated IBD events 160k/year
- Energy resolution **4.5%**/ \sqrt{E}
- Perform most precise ²³⁵U spectrum measurement
- Compare various reactor antineutrino spectrum models
- Provide a benchmark for future reactor antineutrino experiments
- Excellent complement to existing LEU reactor measurements

Antineutrino Source

Baseline coverage of the PROSPECT detector

- High Flux Isotope Reactor (85 MW) at ORNL
- HEU Reactor ~93 % ²³⁵U enrichment (>99% $\overline{\nu}_e$ from ²³⁵U)
- Short reactor cycles (~25 days) Low P239 buildup (< 0.5%)
- Compact core (0.5m high, 0.4 m wide) No oscillation washout

• ~47 % up-time

>50% reactor off-time - Extensive
 background characterization
 ~ 3 years experience of on-site

operation

● Easy 24/7 access

Detector Design

Single detector segment

- Optically divided into a **11x14** identical segments
- Each segment is a detector i.e.,
 154 detectors
- Low mass optical separators
- Minimum dead material
- Double-ended readout
- *in-situ* calibration access

Detection Mechanism

Segmentation allows for background rejection

PROSPECT: Background Characterization and Reduction

- HFIR background characterized in detail
- Both reactor related and uncorrelated backgrounds measured
- Lead wall designed to shield reactor related backgrounds
- Passive shield design motivated by measured backgrounds

Effect of varying lead wall configuration on gammas

Cosmic backgrounds can be calibrated out using data from reactor off time

Use outer laver of the detector as veto

Local shielding joining reactor wall

Comparison of Data with PROSPECT MC

Projected S:B for PROSPECT full-size detector is better than 3:1

P20 measured cosmic backgrounds during reactor-off periods

-200

-100

0

100

200

t_n-t_e [µs]

10

Detector Development

P. T. Surukuchi

Subcomponent Construction

PMT module components ready for assembly

Assembly and Installation

Assembly video

- Reactor antineutrino experiments reported anomalous rate and shape measurements
- New precision reactor measurement with ability to search L/E signature of oscillations needed

PROSPECT program

- Designed segmented LiLS detector and deployed multiple detectors at HFIR in preparation of a fullsize detector deployment
- Make precision ²³⁵U spectrum measurement, complementary to LEU measurements and compare various models
- PROSPECT will be able to cover sterile neutrino best-fit point at better than 4σ in one calendar year and favored regions at 3σ in 3 yrs
- Detector construction finished, installation and commissioning in progress
- Data taking to commence soon

Thank you

