PROSPECT Precision Oscillation and Spectrum Experiment

Karsten M. Heeger Yale University on behalf of the PROSPECT collaboration

Reactor Antineutrinos

\overline{v}_{e} from β -decays, pure \overline{v}_{e} source

of n-rich fission products on average ~6 beta decays until stable

> 99.9% of \overline{v}_{e} are produced by fissions in ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu

mean energy of \overline{v}_e : 3.6 MeV

only disappearance experiments possible

Reactor Antineutrino "Anomalies" (RAA)

Flux Deficit

Spectral Deviation

Deficit due to extra (sterile) neutrino oscillations or artifact of flux predictions?

Measured spectrum does not agree with predictions.

Daya Bay, CPC 41, No. 1 (2017)

Understanding reactor flux and spectrum anomalies requires additional data

Karsten Heeger, Yale University

Reactor Antineutrino "Anomalies" (RAA)

Flux Deficit

Spectral Deviation

Deficit due to extra (sterile) neutrino oscillations or artifact of flux predictions?

Measured spectrum does not agree with predictions.

Daya Bay, CPC 41, No. 1 (2017)

Understanding reactor flux and spectrum anomalies requires additional data

Precision Oscillation and Spectrum Experiment

Objectives Search for short-baseline oscillation at <10m Precision measurement of ²³⁵U reactor v_e spectrum

Relative Spectrum Measurement

Karsten Heeger, Yale University

relative measurement of L/E and spectral shape distortions

Experimental Site

Reactor Core

Power: 85 MW Core shape: cylindrical Size: h=0.5m r=0.2m Duty-cycle: 46%, 7 cycles/yr, 24 days Fuel: HEU (²³⁵U)

compact reactor core, detector near surface, little overburden

highly-enriched (HEU): >99% of \overline{v}_e flux from ²³⁵U fission

Karsten Heeger, Yale University

PROSPECT Detector Design

Single 4,000 L ⁶Li-loaded liquid scintillator (3,000 L fiducial volume)

11 x 14 (154) array of optically separated segments

Very low mass separators (1.5 mm thick)

Corner support rods allow for full *in situ* calibration access

Double ended PMT readout, with light concentrators

good light collection and energy response \sim 4.5-5% \sqrt{E} energy resolution full X,Y,Z event reconstruction

Morion

Optimized shielding to reduce cosmogenic backgrounds

Karsten Heeger, Yale University

Background Rejection

before cuts

Detector design further optimized for background rejection

Combine:

n+H

- PSD
- Shower veto
- Event topology
- Fiducialization

PROSPECT - arXiv:1808:00097

Assembly of First Row November 1, 2017

Assembly in 30s (video)

Final Row Installation November 17, 2017

Dry Commissioning Dec 2017 - Jan 2018

13

*

11111

115

February 2018 **Arrival at ORNL**

2190 1325018 2278 85 8 3608 6

TARS

NOMINAL 4

15326 LA

3359 ¥1 3434 18

25 AND 1

In Position at HFIR

Filling from Mixing Tank

February 2018 **Arrival at ORNL**

2190 1325018 2278 85 8 36028 65

TARS

NOMINAL 4

15326 LA

3359 ¥1 3434 18

25 883 1

In Position at HFIR

Filling from Mixing Tank

February 2018 Arrival at ORNL

21PU 132501 8 22T8 N 5 W 3M38 M 1576 M

3350 ¥1 7474 LB

25 889 1

TARE

KOMINAL

4....

In Position at HFIR

Filling from Mixing Tank

Energy Reconstruction

Gamma sources (¹³⁷Cs, ⁶⁰Co, ²²Na) deployed throughout detector, measure single segment response

Fast-neutron tagged ¹²B: High-energy beta spectrum calibration

Resolution and Reconstruction

Full-detector E_{rec} within ±1% of E_{true} High light collection: 795±15 PE/MeV

Karsten Heeger, Yale University

First Oscillation Analysis Data Set

33 days of Reactor On 28 days of Reactor Off Correlated S/B = 1.36Accidental S/B = 2.25

24,608 IBDs detected

Average of ~750 IBDs/day

IBD event selection defined and frozen on 3 days of data

Phys.Rev.Lett. 121 (2018) no.25, 251802 PROSPECT Collaboration

Neutrino Rate vs Baseline

Observation of 1/r² behavior throughout detector volume Bin events from 108 fiducial segments into 14 baseline bins 40% flux decrease from front of detector to back

Karsten Heeger, Yale University

Neutrino Spectrum vs Baseline

Spectral Distortion vs Baseline

Compare spectra from 6 baselines to measured full-detector spectrum

Null-oscillation would yield a flat ratio for all baselines

Direct ratio search for oscillations, reactor model independent

Karsten Heeger, Yale University

Oscillation Search Results

Disfavors RAA best-fit point at >95% CL (2.2 σ)

New Measurement of ²³⁵U Spectrum

Prompt Energy Spectrum

40.2 days of reactor-on exposure, 37.8days of reactor-off exposure ~ 31,000 IBD candidate events (reactor-off candidate events scaled to match exposure) measured spectrum with good S/B at surface 1.7/1 (0.8-7.2 MeV) ~ 6x greater statistics than ILL (1981)

Karsten Heeger, Yale University

Prompt Energy Spectrum

Is PROSPECT consistent with Huber ²³⁵U model for HFIR HEU reactor?

 χ^2 /ndf = 52.1/31 p-value = 0.01

Huber model broadly agrees with spectrum but is not a good fit.

Deviations mostly in two energy regions.

Prompt Energy Spectrum

Summary

PROSPECT started taking data on March 6, 2018

Background rejection and energy resolution meet expectation and match Monte Carlo.

World-leading signal-to-background for a surface-based detector (<1 mwe overburden). Observed antineutrinos from HFIR with good signal/background.

First oscillation analysis on 33 days of reactor-on data disfavors the RAA best-fit at 2.2σ .

Made first modern measurement of an antineutrino spectrum from a HEU reactor with a surface-based experiment.

Based on results of PROSPECT and other experiments sterile neutrinos are increasingly disfavored

prospect.yale.edu

Yale

Funding provided by:

PROSPECT

