PROSPECT: Precision Reactor Oscillation and SPECTrum Experiment

Danielle Norcini Yale University

Penn Neutrino Seminar November 20, 2015

Penn Neutrino Seminar: Nov. 20, 2015

1

Outline

1. Introduction to neutrinos and neutrino anomalies

2. PROSPECT short baseline reactor experiment

3. PROSPECT Phase I program

4. Concluding remarks

Outline

1. Introduction to neutrinos and neutrino anomalies

2. PROSPECT short baseline reactor experiment

3. PROSPECT Phase I program

4. Concluding remarks

Beginning of neutrino physics

 neutrinos postulated by W. Pauli in 1930 to explain energy conservation in β decay

FIG. 5. Energy distribution curve of the beta-rays.

- in 1956, Cowan and Reines observed (anti-)neutrinos from a reactor
- added to the Standard Model as chargeless, massless, weakly interacting leptons that come in 3-flavors
- study neutrinos from different sources (e.g. reactors, solar, atmospheric, accelerators)

Neutrino anomalies...

atmospheric neutrino anomaly

Danielle Norcini

Penn Neutrino Seminar: Nov. 20, 2015

...lead to discoveries

 $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation through the earth

sum of all ν matched solar prediction

"for the discovery of neutrino oscillations which shows that neutrinos have mass"

Current picture of neutrino oscillation physics

Neutrinos undergo quantum mechanical oscillations between flavor and mass states, implying they are massive (although very light) particles.

Oscillations - two neutrino approximation

Parameters θ (mixing angle - amplitude) and Δm^2 (mass splitting - frequency) are defined by nature. We can target specific Δm^2 measurements by designing our experiments to have a certain L/E.

Precision reactor antineutrino experiments

Kilometer baseline θ_{13} precision experiments: Daya Bay, Double Chooz, RENO

Reactor flux anomaly

- relative counting measurement between near and far shows deficit in anti- ν_e flux
- indicates oscillations to other SM neutrino flavors over kilometer baselines
- consistent with solar, atmospheric, and accelerator data

- near and far detectors observe overall flux deficit when compared to 2011 prediction
- new measurements agree with old reactor experiments with better precision
- reactor global flux deficit ~5%

anti- ν_e disappearance

Reactor flux anomaly

Flux hypothesis - sterile neutrino oscillations

Blue shows fit to reactor data with a 3+1 neutrino model

Flux hypothesis - sterile neutrino oscillations

Blue shows fit to reactor data with a 3+1 neutrino model

eV-scale sterile neutrinos and other anomalies

LSND

MiniBooNE short baseline accelerator

GALLEX/SAGE Ga source calibration

Of course, the addition of a each sterile state adds a set of new parameters to the mixing framework. What is the practical effect?

An eV-scale sterile would impact:

- long-baseline experiments measuring CP violation
- neutrinoless double beta decay observing Majorana neutrinos

Steriles indicate new physics and will have a profound effect on future experiments. *We need definitive short-baseline experiments that don't rely on predictions!*

Reactor spectrum anomaly

Antineutrino energy spectra from Daya Bay and Double Chooz.

10% excess of events in the 4-6 MeV region when compared to reactor models, also known as "the bump".

Spectrum hypothesis - deficiencies in models

power reactor fuels composed of ²³⁵U, ²³⁸U,
 ²³⁹Pu and ²⁴¹Pu

 total emitted spectrum is an admixture, thousands beta branches

Two major approaches to calculate spectrum: 1. *Ab-initio*

- calculate spectrum branch-by branch using beta branch databases
- 2. Beta conversion
 - measure beta spectrum of main isotopes
 - fit with 'virtual branches' and converted to antineutrino spectra

Both methods have complications and difficulties.

Outline

1. Introduction to neutrinos and neutrino anomalies

2. PROSPECT short baseline reactor experiment

3. PROSPECT Phase I program

4. Concluding remarks

18

Precision Reactor Oscillation and SPECTrum experiment

Physics objectives:

- 1. Search for short-baseline oscillation at distances <10 m
- 2. Perform a precision measurement of ²³⁵U reactor anti- $\nu_{\rm e}$ spectrum

Requirements:

- energy resolution of 4.5%/ \sqrt{E} (σ/E) for spectral measurement
- good position resolution for comparing spectra between baselines
- excellent background rejection capabilities at near-surface, reactor site

Detection mechanism - lithium liquid scintillator

coincidence of these two signals indicates an IBD event

PROSPECT site - High Flux Isotope Reactor (HFIR)

power: 85MW (research)
fuel: highly enriched uranium (²³⁵U)
core shape: cylindrical
size: h=0.5m r=0.2m (compact)
duty-cycle: 41%
baselines: 7-11m, 16-20m

Background challenges and measurements

Experimental set-up: near-surface, short-baseline liquid scintillator (LS) detectors

Correlated Backgrounds:

- cosmogenic fast neutrons
- multiple neutron captures

Uncorrelated Backgrounds (accidentals):

- reactor-related gammas
- gammas from internal backgrounds (²³²Th, ⁴⁰K)

Cosmogenic fast neutrons **HFIR Near** HFIR Far

Unshielded gammas (near)

Outline

1. Introduction to neutrinos and neutrino anomalies

2. PROSPECT short baseline reactor experiment

3. PROSPECT Phase I program

4. Concluding remarks

23

Short-baseline, near-surface detection techniques

1. Segmented detector

- relative oscillations between segments
- several pure L/E measurements
- independent of predictions

2. Novel ⁶Li liquid scintillator

- distinct (α , triton) signature
- highly localized, time and space
- separate from reactor γ energy
- good energy resolution
- excellent pulse-shape discrimination
- safe, non-flammable

3. Shielding design

- localized Pb reactor wall
- neutron shielding package

4. Compact, HEU reactor

- point source of neutrinos
- one fuel isotope

PROSPECT Phase I detector

Phase 1 near detector:

- 3 tons ⁶Li-loaded EJ-309 liquid scintillator
- 10x12 segmented array
- low-mass optical separators
- segment size: 120x15x15 cm³
- double-ended PMT readout
- movable, baseline coverage 7-11m

High Flux Isotope Reactor (ORNL)

Physics goals:

- 1. probe sterile ν parameter space at 3σ in 1 calendar year
- 2. precision measurement of ²³⁵U neutrino spectrum

Phased detector development approach

PROSPECT-0.1

Characterize LS Aug 2014 Spring 2015

PROSPECT-2

Background studies Winter 2014-15 Aug 2015

PROSPECT-20

Characterize segment Spring-Summer 2015

PROSPECT-60

Mechanical prototype Late 2015*

PROSPECT-2k

Physics measurement

Late 2016*

1m 23 liter LS, ⁶LiLS

1m 60 liter (1x2) ⁶LiLS segments

> 1m 3 tons ⁶LiLS segments

Penn Neutrino Seminar: Nov. 20, 2015

Lithium-loaded liquid scintillator (LiLS) development

Novel scintillator cocktail:

- PSD LiLS that is non-toxic, non-flammable
- extensive studies with LAB, Ultima Gold
- EJ-309 gave best light yield, PSD

Scintillator specs (PROSPECT-0.1):

- Light Yield_{EJ-309} = 11500 ph/MeV
- Light Yield_{LiLS, measured} = 8200 ph/MeV
- prominent neutron capture peak in LiLS
- PSD FOM at (n, Li) is 1.79
- energy resolution (σ /E) of 5.2% at 0.6MeV_{ee}

developed novel LiLS with excellent light yield, PSD, and neutron capture capabilities

Can take advantage of how different particles deposit energy in scintillator using pulse-shape discrimination (PSD). Gives particle identification information.

PROSPECT-2 (LiLS)

particle classification: light particles = "gamma-like", heavy charged = "neutron-like"

Can take advantage of how different particles deposit energy in scintillator using pulse-shape discrimination (PSD). Gives particle identification information.

PROSPECT-2 (LiLS)

particle classification: light particles = "gamma-like", heavy charged = "neutron-like"

Tackling backgrounds with PSD

prompt signal: 1-10 MeV positron from inverse beta decay delay signal: 0.6 MeV signal from neutron capture on ⁶Li

PSD signatures	
Signal	inverse beta decay γ -like prompt, n-like delay
Background	fast neutron n-like prompt, n-like delay
	accidental gamma γ -like prompt, γ -like delay

particle ID strongly suppresses cosmogenic correlated and reactor-induced uncorrelated backgrounds

Tackling backgrounds with detector design

- the neutron capture on ⁶Li allows for event localization, and combined with the localized e⁺ gives a spatial correlation in addition to the IBD temporal correlation
- easy fiducialization to control gamma backgrounds
- designed localized shielding to suppress cosmogenic and reactor correlated backgrounds
- cosmogenic neutron backgrounds can be subtracted with reactor-off data sets

detector structure and passive shielding designed for near-surface backgrounds

Compatibility and design of low-mass separators

Compatibility:

- extensive material compatibility testing required to ensure long-term LS performance
- focus on materials proven in recent experiments -PTFE, acrylic, polypropylene, ...
- long-term mechanical stability verified

Separators:

- physics goals demand low inactive mass, high reflectivity, and long-term compatibility
- developed multi-layer system meeting all requirements
- fabrication procedures for full-scale system under validation

produced robust low-mass separators from LS-compatible materials

PROSPECT-20 segment studies

LiLS with realistic geometry, above target light collection goal with excellent PSD

Simulation to benchmark prototype data

Simulations have been developed to meet distinct needs:

1. Segment design

simulations further used to optimize light transport, shielding etc in context of science goals

2. Background mitigation

develop single flexible Monte Carlo, benchmark against prototypes, enable extrapolation to full detector

3. Detector response

detailed model of detector response ensures PROSPECT has precision spectral measurement capability

Representative 500 MeV primary

prototyping program has enabled validation of mechanics, detector response, and simulation models

Simulation to benchmark prototype data

Simulations have been developed to meet distinct needs:

1. Segment design

simulations further used to optimize light transport, shielding etc in context of science goals

2. Background mitigation

develop single flexible Monte Carlo, benchmark against prototypes, enable extrapolation to full detector

3. Detector response

detailed model of detector response ensures PROSPECT has precision spectral measurement capability

power of fiducialization

prototyping program has enabled validation of mechanics, detector response, and simulation models

Validation of Monte Carlo from HFIR data

- PROSPECT-20 'simple' Monte Carlo agrees reasonably with data
- confident in extrapolating MC to Phase I detector
- after series of effective cuts, can reach S:B > 3:1
- surpasses physics goals target
- will measure these backgrounds during reactor-off time in Phase I

prototype deployment validated background MC to project Phase I S:B

prompt ionization [MeV]

1.0

0.5

PROSPECT Phase I physics reach

Sterile neutrino search

Sensitivity parameters:

fiducialized volume: 8x10 segments segment fiducialization: 90x15x15 cm³ S:B: 3:1 for nearest position + Phase II energy resolution: $4.5\%/\sqrt{E}$ position resolution: 15cm

What we are currently working on

1. PROSPECT-60 1x2 LiLS array separators Mechanical prototype to validate detector components corner rod piece and test operation of subsystems. segment with corner rods PMT housing + light guide 2. LS nonlinearity measurements HPGe with Co-60 and Bi-207 14000 Co 1.173 6us Bi .570 12000 Co 1.333 Study non-linearities in 10000 Coincideno scintillator at low energies Electronics counts 8000 using mono-energetic Collimators Bi 1.064 Attenuators 6000 electrons using Compton 4000 coincidence spectrometer. 2000 Bi 1.77 Detector 1 Monoenergetic 0 (Scintillator) Gamma-ray Source 1500 2000 ĺ٥. 500 1000 2500 3000 3500

integral (ADC channel)

Outline

1. Introduction to neutrinos and neutrino anomalies

2. PROSPECT short baseline reactor experiment

3. PROSPECT Phase | program

4. Concluding remarks

HIGH FLUX

- 1. Anomalies have led to great discoveries in the history of neutrino physics.
- 2. The reactor anomaly entails both a flux deficit hinting at sterile neutrinos and a spectral deviation, the PROSPECT experiment can address both.
- 3. The PROSPECT R&D program has:
 - successfully deployed multiple prototype detectors
 - developed a detailed understanding of near-surface backgrounds at HFIR
 - developed technology required for the Phase I detector
 - produced simulation models validated against prototype data
- 4. PROSPECT Phase I is ready to proceed with precision ²³⁵U spectrum measurement and cover the sterile global best fit in 1 calendar year at 3σ

The PROSPECT Collaboration

4 national laboratories | 9 universities | 63 collaborators | prospect.yale.edu

Anomalies lead to discoveries

Penn Neutrino Seminar: Nov. 20, 2015

Where to look for sterile neutrinos?

PROSPECT: Hands-on science

Back-up: PROSPECT-2 at HFIR

Detector geometry: 1.7L cylinder Scintillator: Li-loaded EJ-309 PMTs: 5" flat ET9823 Shielding: poly, Pb, Bpoly Reflectors: diffuse Gore DAQ: CAEN 1720 (12bit) Purpose: background reduction method

PROSPECT-2 at HFIR

Coincidence analysis:

- cosmogenic fast neutrons (real)
- cosmogenic showers (multiple captures)
- reactor-related gammas (accidental)

PSD cuts on prompt and delayed signals rejects many of these backgrounds.

Back-up: PROSPECT-20 at HFIR

Detector geometry: 23L 1-meter rectangle Scintillator: Li-loaded EJ-309 PMTs: 5" flat ET9823 Shielding: poly, Pb, Bpoly, water bricks Reflectors: 3M SolarMirror DAQ: CAEN 1720 (12bit) Purpose: Operate full PROSPECT segment

PROSPECT-20 at HFIR

Accidentals reduced significantly with energy and PSD cuts.

Back-up: PROSPECT-20 at Yale

Optics optimization studies:

- Reflector type
- Reflector coupling
- PMT read-out
- Compare to simulation

Soon to come:

- Optical coupler geometries
- Li-loaded EJ-309

Detector geometry: 23L 1-meter rectangle Scintillator: EJ-309 PMT(s): 5" spherical Hamamatsu R6594 Shielding: Pb Reflectors: variable DAQ: CAEN 1730 (14bit) Purpose: optimize optics of full segment

Segment response: light collection and PSD studies

- low energy PSD (0.5-0.7MeV) allows for 99.99% rejection of γ , 99% acceptance n events
- can improve geometry using internal separators

excellent PSD is obtained in realistic geometry at target light collection of 500pe/MeV

0.0

0.0

1.0

0.5

1.5

Energy (MeV)

2.0

2.5

3.0

Segment response: double-ended readout

light collection measurements

JINST 10 P11004 (2015)

double-ended readout allows for uniform optical collection, enhanced PSD, and axial position resolution

Lithium dopant in liquid scintillator

1. Small detectors that do not have full calorimetry information. But, neutron capture on ⁶Li allows for single-site topology.

2. PROSPECT will be in a high gamma environment, with energies ranging from 1-10MeV. This background will not interfere with neutron captures since (n, Li) events fall in the "n-like" pulse shape discriminate (PSD) band.

Can contain (n, Li) events in segments and extract from backgrounds.

Validation of MC from prototypes at HFIR site

