Energy split between protons and inelastic (a) electron-like component at this scale. That is, not allowing inelastic gammas 'mask' recoil signature. Length scale of IBD-like events is ~10 cm, detector must be capable of 'seeing' recoils (signature of non-IBD) against an
Neutral, shield-penetrating, neutrons above ~5 MeV can produce the prompt electron-like recoil with delayed-neutron-capture (b) keV neutrino experiments is kilometer scale overburden. Only easily vetted muons remain from the surface. Surrounding rock and radio-purity of detector critical. Neutron backgrounds are largely downward directed at higher energies. Can be very time-dependent, up to 10s percent. Depends on space weather, atmospheric depth, etc...

Energy split between protons and inelastic gammas. Remains to go to heavier recoils.

Neutron, shield-penetrating, neutrons above ~5 MeV can produce the prompt electron-like recoil with delayed-neutron-capture signature of an IBD through inelastic scattering. At lower energies, neutrons yield only elastic scatters that can be vetoed with PSD. Neutron spallation can create time correlated multi-neutron events.

With PSD, key to background suppression is separating prompt electron-like component from heavier recoils. Length scales are 10s cm.