PROSPECT:

Precision Reactor Oscillation and Spectrum Experiment

Yale University

December 16, 2015

On Behalf of the PROSPECT Collaboration

Outline

- New physics with reactor neutrinos
 - Sterile neutrino
 - Spectrum measurement
- PROSPECT physics: detector design and sensitivity
- PROSPECT R&D program
- Ongoing work
- Summary

Reactor Neutrino – A tool for discovery

2012 - Measurement of θ_{13} with Reactor Neutrinos

2003 - First observation of reactor antineutrino disappearance

1995 - Nobel Prize to Fred Reines at UC Irvine

1956 - First observation of (anti)neutrinos

Past Reactor Experiments Hanford Savannah River ILL, France Bugey, France Rovno, Russia Goesgen, Switzerland Krasnoyark, Russia Palo Verde Chooz, France

Reactor antineutrino

Source

Pure \overline{v}_{e} from β -decays of n-rich fission products

> 99.9% of $\overline{v_e}$ are produced by fissions in ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu

Detection

inverse beta decay $\overline{v}_e + p \rightarrow e^+ + n$

Threshold: neutrinos with E < 1.8 MeVare not detected

Disappearance experiments

neutrinos/MeV/fission

10

8

Rich reactor Neutrino program at different baselines

Reactor antineutrino anomaly: deficit in the observed reactor flux

Other hints for sterile neutrinos

MiniBooNE short baseline accelerator

GALLEX/SAGE Ga source calibration

anti-ve appearance

Events / MeV

low energy (anti-)ν_e appearance

ν_e disappearance

Global fit

- Various fits on v_e data indicate $\Delta m^2 \sim 1eV^2$ and $\sin^2 2\theta \sim 0.1$
- Global fits with v_u data shows tension in 3+1 or 3+2 models.
- "Pragmatic fit" works better if ignore MiniBoone low energy excess.

Giunti: PRD88 073008 (2013); arXiv:1507.08204 LSN: ArXiv: 1204.5379 (2012) Kopp: JHEP 1305 050 (2013)

Implications for the Future Neutrino Program

eV-scale sterile neutrino would change:

- Expected neutrino spectrum and thus sensitivity to CP violation for long base neutrino program.
- Effective Majorana mass measured by neutrinoless double-beta decay.

DUNE

70

60

50

40

30

20

10

events / 0.25 GeV

anti-neutrino events, NH

neutrino events, NH

 $(\theta_{14}, \theta_{24})$: (20°, 10°)

 $(15^{\circ}, 10^{\circ})$

 $(5^{\circ}, 5^{\circ})$

3+0

300

250

200

150

100

50

events / 0.25 GeV

More from reactor neutrinos: spectrum anomaly

- The spectral bump
 - ~10% excess in the 4-6 MeV region when compared to model calculations
- Observed in all three θ_{13} experiments
 - RENO shows the largest bump.

Ke Han, Yale University

Difficulties in spectrum modeling

Reactor neutrino spectrum is an admixture of thousands beta branches from fission products of ²³⁵U, ²³⁸U, ²³⁹Pu and ²⁴¹Pu

- Conversion method: Cumulative neutrino spectrum from measured beta spectrum
- Summation method: Combine fission yields with decay data in databases
 - Discrepancy between databases
 - Decay schemes

Very short baseline reactor neutrino programs world-wide

STEREO: Gd-LS detector at 10m from ILL , France

Neutrino-4: Gd-LS detector at 6-12m from SM-3, Russia

SoLid/CHANDLER: segmented composite scintillator cubes at 5.5 m from BR2, Belgium

DANSS: Segmented plastic scintillator at ~10m from KNPP, Russia

NuLAT: Boron-loaded plastic scintillator cubes

NEOS: Gd-LS detector at ~30m from Hanbit, Korea

PROSPECT Experiment

Physics Objectives

- 1. Search for short-baseline oscillation at distances <10m
- 2. Precision measurement of ²³⁵U reactor *v*_e spectrum

whitepaper, <u>arXiv:1309.7647</u> PROSPECT collaboration

physics program, <u>arXiv:1512.02202</u> PROSPECT collaboration

Phase I

one movable detector AD-I, ~7-12 m baseline

Phase II

two detectors, movable AD-I, ~7-12m baseline stationary AD-II, ~15-19m baseline

- movable detector enables systematic control, background checks, and increased physics reach
- phased approach mitigates risks

High Flux Isotope Reactor (HFIR) at ORNL

- HEU reactor provides static spectrum of mainly ²³⁵U.
- Compact core avoids oscillation washout
- Frequent outages for background measurement
- Multiple accessible baselines
- Detailed core models

Site	Power	Duty Cycle	Near Baseline	Average Near Flux	Far Baseline	Average Far Flux
NIST	20 MW _{th}	68%	5.3m	1	17.0m	1
HFIR	85 MW _{th}	41%	7.9m	1.1	17.9m	2.3
ATR	110 MW _{th}	68%	10.1m	1.5	18.8m	4.5

PROSPECT Phase I detector

Antineutrino Detector Segments

PMT + Light Guide + Optical Separator + ⁶LiLS

PROSPECT Phase I detector

- 3000L of ⁶Li liquid scintillator
- 120 scintillator loaded segments, ~15x15x120cm
- Double ended PMT readout, light guides, $4.5\%/\sqrt{E}$ resolutions
- Thin optical separators, minimal dead material
- Containment vessel, filled in place

Sensitivity reach

Sensitivity reach

- 4σ test of best fit after 1 year
- $>3\sigma$ test of favored region after 3 yr
- 5σ test of allowed region after 3+3 yr

Antineutrino Detector 1 (AD-I)	
Cross-section	$1.2 \times 1.45 \text{ m}^2$
Proton density	$5.5 \times 10^{28} \text{ p/m}^3$
Total Target Mass	2940 kg
Fiducialized Target Mass	1480 kg
Baseline range	4.4 m
Efficiency in Fiducial Volume	42%
Position resolution	15 cm
Energy resolution	$4.5\%/\sqrt{E}$
S:B Ratio	3.1, 2.6, 1.8
Closest distance	6.9 m, 8.1 m, 9.4 m
Antineutrino Detector 2 (AD-II)	
Total Target Mass	~ 10 ton
Fiducialized Target Mass	$\sim 70\%$
Baseline range	$\sim 4 \text{ m}$
Efficiency in Fiducial Volume	42%
Position resolution	15 cm
Energy resolution	$4.5\%/\sqrt{E}$
S:B ratio	3.0
Closest distance	15 m
Operational Exposure	
Phase I	1, 3 years
Phase II	3 years

Sensitivity vs. detector parameters

- Baseline coverage
- Detector mass
- Detection efficiency
- Background suppression

	Decreas
Position	Front on
	2.79
Position	10cm
Resolution	4.69
Efficiency	32%
	3.84
Energy	3%
Resolution	4.61
Background	×0.33
Suppression	3.92
Bin-to-Bin	0.5%
Uncertainty	4.69
Relative Segment	0.5%
Normalization	4.60
Detector	10×8
Size	3.23

Testing models of the ²³⁵U neutrino spectrum

- Directly test/constrain reactor antineutrino spectrum predictions
- Compare different reactor cores
- A better understanding of the reactor neutrino spectrum will aid precision medium-baseline reactor experiments

0.90

0.85

0.80∟ 2

3

PROSPECT Detector and Shielding at HFIR Development

PROSPECT-0.1

Characterize LS Aug 2014-Spring 2015

23 liters

LS, ⁶LiLS

PROSPECT-2 Background studies Dec 2014 - Aug 2015

12.5 length 1.7 liters ⁶LiLS

1x2 segments

1.2m length

50 liters

21

⁶LiLS

multi-layer shielding

PROSPECT-20 1m length Segment characterization Scintillator studies Background studies Spring/Summer 2015

PROSPECT-50 Baseline design prototype Winter 2015

Mid 2016

PROSPECT AD-I Physics measurement *Technically ready to proceed directly Late 2016 to near detector

with available funding

⁶LiLS 10x12 segments 1.2m length ~3 tons ⁶LiLS

4x4 segments

1.2m length

400 liters

reactor core

Li loaded liquid scintillator (LiLS) with pulse shape discrimination (PSD)

- Inverse beta decay (IBD) prompt signal followed by delayed neutron capture.
- Localized signal events in LiLS detector segments
- PSD strongly suppresses cosmogenic correlated and reactor-induced uncorrelated backgrounds

prompt signal: 1-10 MeV positron from inverse beta decay

delay signal: quenched 0.6 MeV signal from neutron capture on ⁶Li; 40µs delayed

Li-EJ309 with excellent light yield and PSD

- EJ-309 light yield (LY) = 11500 ph/MeV
- Li loaded EJ-309 LY = 8200 ph/MeV (measured)
- Prominent neutron capture peak in LiLS
- PSD FOM at (n, Li) is 1.79
- EJ-309 is non-toxic, non-flammable
- Extensive studies with LAB, Ultima Gold

Light collection and PSD validated in full size segments

- PROSPECT-20 detector with unloaded EJ309 and LiLS
- Light collection 522±16 PE/MeV
 - Reach PROSPECT goal → 4.5%/√E
- PSD FOM = 1.4
 - Reject 99.9% of the background while keep 99.9% of the signal
- Unloaded LS studies described in JINST 10 P11004, arXiv:1508.06575
 - Optimized detector configuration
 - Reflector choice

Antineutrino Detector Segmentation

Low-mass, optical separators

Low-mass reflector prototypes

Fiducialization

Phase I AD-1, IBD-like neutron segment

Shielding: Reactor Antineutrino Measurement Facility (RAMF) at HFIR

- local shielding next to reactor wall
- multi-layer passive shield around detector (water bricks, HDPE, borated HDPE, lead)
- general purpose digitizing electronics and DAQ

PROSPECT Backgrounds at HFIR

varying reactor shields

Nucl. Instrum. Meth. A806 (2016) 401–419, <u>arXiv:1506.03547</u>, PROSPECT collaboration

Prototypes onsite

- PROSPECT-20 measured cosmic backgrounds during reactor-off
- Monte Carlo agrees reasonably with data
- Confident in extrapolating MC to Phase I detector
- Will measure these backgrounds during reactoroff time in Phase I

PROSPECT Signal & Background

- Signal (dashed) and background (solid) prompt spectra are shown through selection cuts
- S/B better than 1:1 is predicted.
- Rate and shape of the residual IBD-like background can be measured with high precision during reactor off periods.

Cuts	IBD signal		Cosmic BG	
Exposure	Daily	Phase I	Daily	Phase I
PSD	1630	7.3e5	2.1e6	9.5e8
Time (1, 2, 3)	1570	7.1e5	3.4e4	1.5e7
Spatial (4, 5)	1440	6.5e5	9900	4.5e6
Fiducial (6)	660	3.0e5	250	1.1e5

Simulated event rates ($0.8 \le E \le 7.2$ MeV) after applying background rejection cuts

Optical and source calibration

pulsed laser sources

- LiLS light transmission
- PMT gain and timing

encapsulated y sources

- energy scale
- scintillator non-linearity

neutron sources

- PSD calibration
- neutron detection efficiency

radioactive and cosmogenic backgrounds will be used to monitor and calibrate detector response between source deployments

Example: PROSPECT-20

- through going muons
- ⁴⁰K
- n capture on ⁶Li

R&D on scintillator spiking with ²²⁷Ac

- segment uniformity, relative LiLS mass measurements

Ongoing: PROSPECT-50

- Mechanical prototype to validate detector components and test operation of subsystems.
 - PMT housing with light guide
 - Reflectors
 - Calibration
 - LS filling

Ongoing: detector nonlinearity with a Compton spectrometer

- Study non-linearities at low energies using mono-energetic electrons with Compton coincidence spectrometer.
 - Liquid scintillator
 - Detector (end-to-end)
- HPGe detector commissioning and simulation underway

From J. Cao, TAUP 2015

12/16/15

Ke Han, Yale University

14000

12000

10000 8000

6000

4000

PROSPECT Collaboration

Collaboration photo onsite at High Flux Isotope Reactor, Oak Ridge National Laboratory, Summer 2015 **Brookhaven National Laboratory Drexel University** Illinois Institute of Technology Lawrence Livermore National Laboratory Le Moyne College National Institute of Standards and Technology Oak Ridge National Laboratory Temple University University of Tennessee University of Waterloo University of Wisconsin College of William and Mary Yale University

~ 60 collaborators13 institutions3 national laboratories

Summary

- New data are needed to address the existing reactor anomalies.
- PROSPECT Phase I will
 - Probe favored region of eV-scale sterile neutrinos at >3 σ with 3 years of data.
 - Measure ²³⁵U ve spectrum, address spectral deviation, and provide new constraints on reactor antineutrino models complementary to current and future LEU measurements.
- PROSPECT R&D
 - Have developed LiLS detectors that can mitigate reactor- and cosmic related backgrounds.
 - Multiple detectors have been deployed at HFIR in preparation for full-size detector.
 - Completed R&D for technical verification and to mitigate technical, cost, and schedule risks.
- Ready to proceed with construction of Phase I.
- Data taking in 2017 with first physics results in 2018 possible.

PROSPECT R&D and Technical Activities

Ke Han, Yale University

Recent PROSPECT papers

- The PROSPECT Physics Program: arXiv:1512.02202
- Light Collection and Pulse-Shape Discrimination in Elongated Scintillator Cells for the PROSPECT Reactor Antineutrino Experiment: . arXiv:1508.06575, JINST 10 P11004
- Background Radiation Measurements at High Power Research Reactors: arXiv:1506.03547, Nucl. Instrum. Meth. A806 (2016) 401
- PROSPECT A Precision Reactor Oscillation and Spectrum Experiment at Short Baselines: arXiv:1309.7647

