The design and expanded physics reach of the PROSPECT-II detector update

Christian Roca Catala - 17.04.2021

On behalf of the PROSPECT collaboration

LLNL-PRES-821649

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Lawrence Livermore National Laboratory

Christian Roca Catala

Lawrence Livermore National Laboratory - LLNL-PRES-821649

Christian Roca Catala

Lawrence Livermore National Laboratory - LLNL-PRES-821649

Christian Roca Catala

Lawrence Livermore National Laboratory - LLNL-PRES-821649

Status of PROSPECT-I & the Reactor Anomalies

Start: Mar 2018 End: Oct 2018

5 reactor cycles

HFIR outage!

95.65 ON days 73.09 OFF days 530 IBDs/ON day

- S:B = 1.4:1 and 1.8:1 for correlated and accidental respectively
- RAA best-fit disfavored at the 2.5σ C.L
- Compatible with non-oscillation hypothesis (p = 0.57)

Christian Roca Catala

Lawrence Livermore National Laboratory - LLNL-PRES-821649

- Shape analysis agreement with Huber model $(\chi^2/\text{ndf} = 30.79/31)$
- Both no-U235-bump / all-U235-bump disfavored at the 2.4 / 2.2 σ C.L .

From PROSPECT-I to PROSPECT-II

SB Spectrum and flux anomalies are still such a **hot** topic!

- Reference anti neutrino spectrum needed.
- Shape anomaly 4-6 MeV not explained.
- Absolute flux isotopic dependence continually under discussion.

Case	Description	Precision on σ_i (%)		
		²³⁵ U	²³⁹ Pu	²³⁸ U
1	Daya Bay LEU	3.7	8.2	30
2	Daya Bay LEU + P-II HEU	2.4	6.3	21.3
3	P-II LEU + P-II improved HEU	1.4	3.4	15.9
4	P-II LEU + P-II improved HEU, Correlated	1.4	3.0	8.7

Ratio to Predictio (Huber-Mueller) 1.1 0.9

0.8

SRP-18.2 m SRP-II 23.8 m 33.0 m 34.0 m 57.3 m 92.3 m

Christian Roca Catala

Lawrence Livermore National Laboratory - LLNL-PRES-821649

From PROSPECT-I to PROSPECT-II

Ambiguities in Long Baseline Experiments

3+1 scenarios lead to substantial degeneracy with 3+0 CP violation.

- hierarchy
- ambiguity.
- from CPV

Christian Roca Catala

Lawrence Livermore National Laboratory - LLNL-PRES-821649

LBL experiments will shed light into lepton CPV and neutrino mass

Existence of sterile neutrino induced oscillations would create

SBL experiments like Prospect II could help disentangle the sterile

PR©SPECT

CP-conserving 4ν scenarios can mimic 3ν large CP-violation.

Inside PROSPECT-II Applying lessons learned

Match initial performance Improved stability Facilitating redeployment

5" PMTs removed from LS target region

PMT bases and HV components covered by epoxy potting

50% reduced material surface in contact with LiLS

Christian Roca Catala

Lawrence Livermore National Laboratory - LLNL-PRES-821649

No planned HFIR outages until 2023: lots of data!

LiLS formulation retested in lab: results show stable solution

Inside PROSPECT-II

<u>Calibration system: External deployment</u>

Christian Roca Catala

Lawrence Livermore National Laboratory - LLNL-PRES-821649

For more info, Xiaobin Lu's talk:

E18.0005: Calibration system for **PROSPECT-II**

PROSPECT-II: oscillation sensibility

Improved physics: enlarging the available phase space

As much as 7x improvement in oscillation sensitivity will result in world-leading limits from ~2-20 eV² Higher sensitivity at high Δm^2 below KATRIN, region with conflicting experimental claims (Neutrino-4) Covering region below 5deg - mid Δm^2 region, could be key to disambiguate CPV observations from LBL **APS April Meeting 2021**

10

PROSPECT-II: spectral analysis

Improved physics: looking into the bump

- Expected uncertainties < 5% per 200 keV bin

Christian Roca Catala

Conclusions and Outlook PROSPECT-I

+50000 IBD signals and S:B = 1.4:1, rejecting RAA best fit at 2.5σ

Antineutrino spectrum measured that favors bump caused by several isotopes.

Malfunction of some PMT dividers and degradation of LY and AL.

HFIR outage reduced to 12% of intended data taking.

.

B13.0003: Joint Isotope-Dependent Analysis of the Daya Bat and PROSPECT Reactor Antineutrino spectra Calibration system for PROSPECT-II							
B13.0004: A Joint Analysis of the PROSPEC	T and STEREO ^{235}U Antineutrino Spectra	E18.0004: Optical Photon Tracking in Geant-4 for the PROSPECT-II Detector Upgrade					
E18.0005: Calibration system for PROSPECT-II		E18.0006: Machine Learning Analysis of PROSPECT Data					
Y18.00006: PROSPECT's latest results		Y18.00007: Improving PROSPECT Neutrino Measurements with Single Ended Event Reconstr					
X10.00007: Cosmic ray boosted dark matter at PROSPECT—theory and propagation		X10.00008: Cosmic ray Boosted Dark Matter at PROSPECT – Experimental Analysis					
Christian Roca Catala	Lawrence Livermore National La	boratory - LLNL-PRES-821649	APS April Meeting 2021				

PROSPECT-II

Upgrades prepared to improve PROSPECT-I while keeping the core concept intact

Expected uncertainties below 5% per 200 keV bin, permitting to address bump hypotheses

Expected x10 more statistics with S:B = 3:1, allowing 7x oscillation sensitivity

Possibility to expand the scope of the analysis towards LEU reactors

Chance at disambiguation LBL CPV and mass hierarchy

