The design and expanded physics reach of the PROSPECT-II detector update

Christian Roca Catala - 17.04.2021

On behalf of the PROSPECT collaboration
The High Flux Isotope Reactor - Oak Ridge

- Compact HEU core
- Pure U-235 fuel
- Research reactor ~ 85MW - 46% reactor up time
Reactor Antineutrino Anomalies

Short baseline flux deficit

6% flux deficit from beta conversion models

Sterile neutrinos?
Incorrect prediction for different fuels?

Experimental bump-like feature at 4-6 MeV region observed by Double Chooz, Daya Bay, RENO...

Spectral shape deviation

PRL 116, 061801 (2016)
PROSPECT-I design

Segmented detector tailored for $\bar{\nu}_e$ detection

- Liquid Scintillator loaded to a mf of 0.08% 6Li
- High-resolution spectrum at a range of baselines (7-9 m)
- 14x11 Segmented detector allows topology selection and background rejection
- Double PMT readout with light concentrators $\sim 5\% \sqrt{E}$ energy resolution

- Prompt Signal: β^+, 1-8 MeV
- Delayed Signal: α, $E_{vis} = 0.526$ MeV
- Selection cuts on $\Delta r, \Delta t$
- Search for relative spectral distortions within the detector volume

$E_{vis} = 0.526$ MeV
Status of PROSPECT-I
& the Reactor Anomalies

Start: Mar 2018
End: Oct 2018
5 reactor cycles
HFIR outage!

95.65 ON days
73.09 OFF days
530 IBDs/ON day

- $S:B = 1.4:1$ and $1.8:1$ for correlated and accidental respectively
- RAA best-fit disfavored at the 2.5σ C.L
- Compatible with non-oscillation hypothesis ($p = 0.57$)

• Shape analysis agreement with Huber model ($\chi^2/\text{ndf} = 30.79/31$)
• Both no-U235-bump / all-U235-bump disfavored at the $2.4 / 2.2\sigma$ C.L .
From PROSPECT-I to PROSPECT-II

SB Spectrum and flux anomalies are still such a hot topic!

- Reference anti neutrino spectrum needed.
- Shape anomaly 4-6 MeV not explained.
- Absolute flux isotopic dependence continually under discussion.

<table>
<thead>
<tr>
<th>Case</th>
<th>Description</th>
<th>Precision on σ_1 (%)</th>
<th>238U</th>
<th>239Pu</th>
<th>239U</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Daya Bay LEU</td>
<td>3.7</td>
<td>8.2</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Daya Bay LEU + P-II HEU</td>
<td>2.4</td>
<td>6.3</td>
<td>21.3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>P-II LEU + P-II improved HEU</td>
<td>1.4</td>
<td>3.4</td>
<td>15.9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>P-II LEU + P-II improved HEU, Correlated</td>
<td>1.4</td>
<td>3.0</td>
<td>8.7</td>
<td></td>
</tr>
</tbody>
</table>
Ambiguities in Long Baseline Experiments

- LBL experiments will shed light into lepton CPV and neutrino mass hierarchy
- Existence of sterile neutrino induced oscillations would create ambiguity.
- SBL experiments like Prospect II could help disentangle the sterile from CPV

3+1 scenarios lead to substantial degeneracy with 3+0 CP violation.
Inside PROSPECT-II

Applying lessons learned

- Match initial performance
- Improved stability
- Facilitating redeployment

5” PMTs removed from LS target region

- PMT bases and HV components covered by epoxy potting

50% reduced material surface in contact with LiLS

- LiLS formulation retested in lab: results show stable solution

No planned HFIR outages until 2023: lots of data!
Inside PROSPECT-II

Calibration system: External deployment

- Internal penetrations removed in favor of external system
- A setup with simplified design!

Prioritizing intrinsic sources like n-capt in H and 6Li, cosmogenic ^{12}B beta decays...

For more info, Xiaobin Lu's talk: E18.0005: Calibration system for PROSPECT-II

Simulated outside calibration vs P-I data shows excellent agreement
As much as 7x improvement in oscillation sensitivity will result in world-leading limits from ~2-20 eV2

Higher sensitivity at high Δm^2 below KATRIN, region with conflicting experimental claims (Neutrino-4)

Covering region below 5deg - mid Δm^2 region, could be key to disambiguate CPV observations from LBL
PROSPECT-II: spectral analysis

Improved physics: looking into the bump

- 10x increase in effective statistics with 2 years PROSPECT-2 running at HFIR.
- Improved S:B ratio to ~ 3:1
- Expected uncertainties < 5% per 200 keV bin

Reduced uncertainties in 4-6 MeV region, comparable to model. Very sensitive to bump - P-II will address hypothesis of origin.

Intended redeployment at an LEU reactor after the 2y HFIR initial deployment!
Conclusions and Outlook

PROSPECT-I

+50000 IBD signals and S:B = 1.4:1, rejecting RAA best fit at 2.5σ

Antineutrino spectrum measured that favors bump caused by several isotopes.

Malfunction of some PMT dividers and degradation of LY and AL.

HFIR outage reduced to 12% of intended data taking.

PROSPECT-II

Upgrades prepared to improve PROSPECT-I while keeping the core concept intact

Expected uncertainties below 5% per 200 keV bin, permitting to address bump hypotheses

Expected $x10$ more statistics with S:B = 3:1, allowing $7x$ oscillation sensitivity

Possibility to expand the scope of the analysis towards LEU reactors

Chance at disambiguation LBL CPV and mass hierarchy