

PROSPECT: Precision Reactor Oscillation and Spectrum Experiment

Xiangpan Ji

for the PROSPECT collaboration

Outline

- Introduction
 - Neutrino oscillation and sterile neutrino
- PROPSECT: reactor model independent search for sterile neutrino
- PROSPECT: precision measurement of the ²³⁵U antineutrino spectrum
- Summary

Neutrino Oscillation

Reactor Neutrino Experiments

Nuclear Reactor As Antineutrino Source

- Commercial reactors in Nuclear Power Plants have low-enriched uranium (LEU) cores
 - Mixture of fissions: ²³⁵U(~55%),
 ²³⁹Pu(~30%), ²³⁸U(~10%), ²⁴¹Pu(~5%)
 - Large power: $\sim 3 \text{ GW}_{\text{th}}$
- Research reactors have <u>highly-enriched</u> <u>uranium</u> (HEU) cores
 - ²³⁵U fission fraction ~99%
 - Lower power, few tens of MW_{th}
 - Compact size

- Nuclear reactors produce pure $\overline{\nu}_e$ from beta decays of fission daughters
 - <u>Low energy</u>: < 10 MeV
- ~6 $\overline{\nu}_e$ /fission
- $2 \times 10^7 \, \overline{\nu}_e$ /MW_{th} per second

Methods to Predict Neutrino Flux/Spectra

Two main approaches:

- Ab initio method
 - Calculate the individual beta-decay spectra from 1000s of isotopes from database info
 - Sum according to cumulative yields
 - ~10% uncertainty due to missing data in the database and forbidden decays

Conversion method

- Measure total outgoing beta-decay electron spectrum of fission products
- Predict corresponding anti-neutrino spectra with > 30 virtual branches
- ~2.5% uncertainty

Example: Fit virtual beta branches

Prediction of neutrino flux has evolved upward over time

In the 1980s, two predictions became the standards for the field (ILL-Vogel model)

- Schreckenbach *et al.* converted their (ILL reactor) measured fission betaspectra for ²³⁵U, ²³⁹Pu and ²⁴¹Pu into antineutrino spectra
- Vogel *et al*. used the nuclear databases to predict the spectrum for ²³⁸U

In 2011, both Huber and Muller et al. re-calculated the prediction (<u>Huber-Mueller</u> <u>model</u>), and the predicted antineutrino flux increase by 5-6%

Changes in Flux/Spectrum:

- Conversion: +3%
- Neutron lifetime: +1%
- Non-equilibrium isotopes: +1%

Phys.Rev. C24 (1981) 1543-1553 Phys.Lett. 118B (1982) 162-166 Phys.Lett. B218 (1989) 365-368

Reactor Antineutrino Anomaly: Flux Deficit

Xiangpan Ji, BNL

Stony Brook University, Nov. 26, 2018

eV-scale Sterile Neutrino Hints

- LSND ($\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ appearance): $L/E \sim 30 \text{m}/30 \text{MeV}$
- MiniBooNE ($\nu_{\mu} \rightarrow \nu_{e}, \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ appearance): $L/E \sim 500 \text{m}/500 \text{MeV}$
- GALLEX/SAGE (v_e disappearance): the gallium anomaly

$$P(\nu_{\alpha} \to \nu_{\beta}) = \delta_{\alpha\beta} - 2\operatorname{Re}\sum_{j>i} U_{\alpha i} U_{\alpha j}^{*} U_{\beta i}^{*} U_{\beta j} \left(1 - e^{i\Delta m_{ij}^{2}L/2E}\right)$$

Phys.Rev.D64:112007,2001 Beam Excess 17.5 Beam Excess $p(\bar{v}_{\mu} \rightarrow \bar{v}_{e}, e^{\dagger})n$ 15 p(⊽_e,e⁺)n 12.5 10 7.5 5 2.5 0 0.8 0.4 0.6 1.2 1.4 L/E. (meters/MeV)

Xiangpan Ji, BNL

MiniBooNE

GALLEX/SAGE: Solar ν expts, Calibrated ν_e source: ⁵¹Cr and ³⁷Ar

Stony Brook University, Nov. 26, 2018

Challenge to Reactor Model: Spectrum "Bump"

- Bump in 4-6 MeV prompt energy (5-7 MeV neutrino energy) observed in 2014 by three θ_{13} experiments
- Cannot be explained by detector effects such as energy response
- Indicates the reactor model uncertainty is under-estimated

PROSPECT: Search for Sterile Neutrino

PROSPECT Collaboration

High Flux Isotope Reactor (HFIR)

- 85MW highly-enriched uranium reactor
 - >99% ²³⁵U fission fraction, effectively no isotopic evolution
- Compact core, 44 cm diameter and 51 cm tall
- 24 day cycles, 46% reactor up time

HFIR at Oak Ridge National Lab

Reactor Core

Reactor Neutrino Detection through IBD Reaction

detection efficiency, oscillation, etc.

Inverse beta decay (IBD): $\overline{\nu}_e + p \rightarrow e^+ + n$ $E_{\overline{\nu}} \approx T_{e^+} + 1.8 \text{MeV}$

IBD Detection with ⁶LiLS

- Event Coincidence Signature
 - e-like prompt signal, followed by a ~40µs delayed neutron capture
- <u>The Pulse Shape Discrimination (PSD)</u> of scintillator distinguishes the β⁺-like event (IBD signal) and *n*-like events (most significant background at HFIR).

Coincidence + PSD to reject of backgrounds

⁶Li-Loaded Liquid Scintillator

LiLS Requirements:

- High light yield (>6000ph/MeV) for energy resolution
- · Excellent pulse-shape discrimination (PSD)
- · Non-toxic, high flashpoint
- Stable and affordable

LiLS based on EJ-309 meets all requirements

- 8200ph/MeV, excellent PSD
- · Safe to operate at a reactor
- 95% ⁶Li enrichment, 0.1% by mass

developed novel LiLS with excellent light yield, PSD, and neutron capture capabilities

PROSPECT Detector Design

- 154 segments (14 x 11)
 - ~25liters (LiLS) per segment, total mass: 4ton
 - Segment: 119cm x 15cm x 15cm
- Thin (1.5mm) reflector panels held in place by 3Dprinted support rods
- Segmentation enables:
 - 1. Relative measurements
 - 2. Calibration access throughout volume
 - 3. Position reconstruction
 - 4. Event topology ID
 - 5. Fiducialization

Reflector •

Double ended PMT readout for full (X,Y,Z) position reconstruction

Concrete Monolith

BORATED POLYETHELYNE

Detector Components

Optical diffuser

Locations of the radioactive source tube (35) and optical insert (42) positions in between the segments of the inner detector

Novel Shielding Design

- Detector operates at the surface < 1m overburden
 → cosmic-ray backgrounds
- Reactor-related bkgs (gammas and thermal n)

Optimize space, weight, and total background suppression

- Main problem is ~100MeV neutrons
- create majority of IBD-like backgrounds (gamma-like prompt, neutron capture)
- Neutron spallation on high-Z shielding increases backgrounds
- Need neutron shielding inside lead shielding

Active Background Suppression

1/20 0.94 0.86 0.83 0.78 0.79 0.72 0.76 0.82 0.89 1.00 1.18 2 15 1/36 0.34 0.18 0.14 0.15 0.15 0.15 0.12 0.14 0.19 0.35 1.31 0.15 0.15 0.12 0.14 0.16 0.17 1.07 1.00 1.18 2 15 0.94 0.05 0.04 0.05 0.05 1.31 0.15 0.15 0.15 0.12 0.14 0.15 0.15 0.15 0.12 0.14 0.14 0.15 0.15 0.15 0.12 0.04 0.05

Simulation

Simulated background rate of cosmogenic neutron interactions

- Optimized detector design for background ID and suppression
- Combine PSD, shower veto, event topology, and fiducialization
- Yields > 10⁴ active suppression of background

Construction and Installation

Oct 2017 – Jan 2018 at Yale Wright Lab

Arrive at Oak Ridge

At HFIR

Filling LiLS from mixing tack

March 5, 2018 Began operation

Detector Characterization

Energy Reconstruction

- Gammas sources (¹³⁷Cs, ⁶⁰Co) deployed throughout detector, measure single segment response
- Fast-neutron tagged ¹²B
 - High-energy beta spectrum calibration
- Full-detector E_{rec} within 1% of E_{true}
- High light collection: 795±15 PE/MeV

Detector Uniformity

Calibration Source Deployment:

- 35 calibration source tubes throughout detector to map energy response
- Segment to segment uniformity ~1%
- ²⁵²Cf source to study neutron capture efficiency

Intrinsic radioactive sources

- Track uniformity over time with distributed internal single-segment sources
- Alpha lines from ${}^{212}\text{Bi} \rightarrow {}^{212}\text{Po} \rightarrow {}^{208}\text{Pb}$ decays, nLi capture peak
- Reconstructed energy stability over time < 1%

Xiangpan Ji, BNL

Stony Brook University, Nov. 26, 2018

²²⁷Ac spike of ⁶LiLS

- α,α coincidence ²¹⁹Rn→²¹⁵Po→²¹¹Pb (RnPo) provides localized, nearly mono-energetic deposits
- If ²²⁷Ac uniformly dissolved in ⁶LiLS, then relative RnPo rate per cell gives the relative mass per cell: Essential for oscillation measurement
- R&D at BNL determined no significant ²²⁷Ac adsorption on detector materials
- ~0.8 Bq ²²⁷Ac added to ~4500 L total ⁶LiLS

NATIONAL LABORATORY

Relative Mass Measurement of Segment

- Relative mass vital for oscillation search
- <u>Survey during construction: < 1% variation</u>
- ²²⁷Ac added to LS prior to filling
- Double alpha decay (²¹⁹Rn→²¹⁵Po→²¹¹Pb), highly localized, easy to ID, 1.78ms lifetime
- <u>Direct measurement of relative target</u> <u>mass in each segment</u>
- Through it, also measured absolute zposition resolution of < 5cm

Detector Response

- Segmented detectors have much more complicated response than large monolithic detectors
- Detailed Monte Carlo model of the detector incorporates all known characteristics
- Covariance matrices built through variation of parameters in MC, used for comparison between measured spectrum and model predictions

First 24Hours of Detector Operation

- March 5, 2018: Fully assembled detector began operation
- **Reactor On:** 1254±30 correlated events between [0.8, 7.2MeV]
- Reactor Off: 614±20 correlated events (first off day March 16)
 - Clear peaks in background from neutron interactions with H and ¹²C
- Time to 5σ detection at earth's surface:
 < 2hrs

PROSPECT is measuring the ²³⁵U antineutrino spectrum

Search for Sterile Neutrino

Oscillation Data Set

- 33 days of Reactor On
- 28 days of Reactor Off
- S/Correlated B = 1.32
- S/Accidental B = 2.20
- 25,461 IBDs detected
- Average of ~770 IBDs/day
- IBD event selection defined and frozen on 3 days of data

arxiv:1806.02784, accepted by the PRL

Neutrino Rate vs Baseline

- Observation of 1/r² behavior throughout detector volume
- Bin events from 108 fiducial segments into 14 baseline bins
- 40% flux decrease from front of detector to back

Spectrum Distortion from Oscillation

- Neutrino oscillations modify the neutrino spectrum as a function of baseline
- Segmentation provides coverage of a range of baselines without moving
- Measure neutrino spectrum for each baseline and compare shape to the detected full-volume
- Reactor model-independent search for sterile neutrinos

Neutrino Spectrum vs Baseline

- Compare spectra from 6 baselines to measured full-detector spectrum
- Null-oscillation would yield a flat ratio for all baselines
- Direct ratio search for oscillations, reactor model independent

Xiangpan Ji, BNL

Stony Brook University, Nov. 26, 2018

Oscillation Search Results

- Feldman-Cousins based confidence intervals for oscillation search
- Covariance matrices captures all uncertainties and energy/baseline correlations
- Critical χ^2 map generated from toy MC using full covariance matrix
- 95% C.L. exclusion curve based on 33 days Reactor On operation
- Cross checked with an independent analysis using Gaussian CLs method (NIMA 827 (2016) 63-78).
- Direct test of the Reactor Antineutrino Anomaly

Disfavors RAA best-fit point at >95% C.L. (2.2 σ)

Measurement of the ²³⁵U Spectrum

Bump-Origin Hypotheses

Use the Daya Bay ratio to Huber/Mueller model to modify Huber ²³⁵U spectrum

- > Hypothesis 1: Deviation contained in other isotopes (Huber ²³⁵U is correct)
- Hypothesis 2: Deviation shared equally by 4 parent isotopes
- > Hypothesis 3: All deviation from ²³⁵U (maximal change to Huber ²³⁵U)

Xiangpan Ji, BNL

Stony Brook University, Nov. 26, 2018

Measurement of spectrum

- 40.2 days reactor-on, 37.8 days reactor-off exposure
- ~31,000 IBDs detected, >700 IBDs/live-day
- Signal-to-background = 1.7

Comparison to Models

- Is PROSPECT consistent with Huber ²³⁵U model?
 - χ2/ndf = 52.7/31
 - Not great, but "standard" comparison
- Frequentist comparison to ad-hoc models:
 - No strong preference between Huber and Equal Isotope
 - Disfavor All 235U
 hypothesis at 3σ

Spectral Interpretation

- Our measured ²³⁵U spectrum cannot fully explain the Daya Bay, Double Chooz, and RENO spectral deviations
 - Implies that some fraction of the bump must come from other fissioning isotopes
- We do not yet have the sensitivity to discriminate between the unmodified Huber model and the Equal Isotope Hypothesis
- > Statistics limited result, stay tuned for more!

Conclusion and Outlook

- PROSPECT started collecting data on March 5, 2018
- World-leading signal-to-background achieved for surface-based detector
- First oscillation analysis on 33 days of reactor-on data disfavors the RAA best-fit at 2.2σ (arXiv: 1806.02784, accepted by PRL)
- First high-statistics measurement of the 235U IBD spectrum disfavors "All 235 U" hypothesis at 3 σ
- Statistics limited, and continuing to collect data

Thank you!

Backup

PROSPECT Sensitivities

- Probe the RAA best-fit point at 4σ after 1 year of data taking
- Have >3σ reach of the favored parameter space after 3 years

Experiment	Reactor	Baseline (m)	Overburden (m.w.e)	Mass (ton)	Segmen tation	Energy res. (@ 1 MeV)
NEOS (South Korea)	LEU 2.8 GW	23.7	~20	1.0	none	5%
Nucifer (France)	HEU 70 MW	7.2	~12	0.6	none	10%
NEUTRINO4 (Russia)	HEU 100 MW	6 - 12	~10	0.3	2D	
DANSS (Russia)	LEU 3.1 GW	10.7 - 12.7	~50	1.1	2D	17%
STEREO (France)	HEU 58 MW	9 – 11	~15	1.6	1D 25 cm	8%
PROSPECT (USA)	HEU 85 MW	7 - 12	< 1	1.5	2D 15cm	4.5%
SoLid (UK Fr Bel US)	HEU 70 MW	6 - 9	~10	1.6	3D 5cm	14%
CHANDLER (USA)	HEU 75 MW	5.5 - 10	~10	1.0	3D 5cm	6%
NuLAT (USA)	HEU 20 MW	4	few	1	3D 5cm	4%

Reactor short baseline experiments

- Search for the sterile neutrino
- Measure the reactor neutrino spectrum

The best energy resolution at present

 \checkmark

Neutrino-4, 480 days of reactor-on (arxiv:1809.10561)

PROSPECT, 33 days of reactor on